首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
桐柏-大别造山带高压变质单元岩石Pb同位素组成   总被引:1,自引:1,他引:0  
铅同位素组成对于研究构造分区与演化、块体相互作用以及识别地壳中不同块体的上、下层次关系等具有重要意义.桐柏-大别造山带高压变质单元岩石的全岩Pb同位素组成研究表明, 在该造山带不同区段, 高压变质岩系二云钠长片麻岩与榴辉岩具有相似的Pb同位素组成, 表现为上部地壳高放射成因的Pb同位素组成特征, 其中Pb同位素组成为: 206Pb/204Pb=17.599~18.310, 207Pb/204Pb=15.318~15.615, 208Pb/204Pb=37.968~39.143.大别和桐柏地区高压变质岩系Pb同位素组成的一致性进一步证明了大别地区与桐柏地区的高压变质岩系是可以相连的, 它们应属于同一构造单元.高压变质岩系Pb同位素比值总体高于超高压变质岩系, 验证了桐柏-大别造山带扬子俯冲陆壳从下部岩系到上部岩系Pb同位素比值呈规律增长这一Pb同位素化学特征.侵入于高压变质岩系中的面理化(含榴)花岗岩, 其Pb同位素组成与高压变质岩系相比相对较低, 而与超高压变质岩系及其中的面理化(含榴)花岗岩相似, 为: 206Pb/204Pb=17.128~17.434, 207Pb/204Pb=15.313~15.422, 208Pb/204Pb=37.631~38.122.这表明高压变质岩系和超高压变质岩系中的面理化(含榴)花岗岩具有相同的岩浆来源.结合面理化(含榴)花岗岩具有A型花岗岩的地球化学特征分析, 它们的岩浆物质可能来自超高压变质岩折返至中下地壳的减压退变和部分熔融.   相似文献   

2.
大别—苏鲁超高压地体中面理化含榴花岗岩的成因研究   总被引:7,自引:1,他引:6  
杨启军  钟增球 《地球科学》2004,29(2):169-176
大别—苏鲁超高压地体中的面理化花岗岩因为常含石榴石而被简称为含榴花岗岩, 其岩石类型主要为二长花岗岩、花岗岩和微斜长石花岗岩, 岩石具有花岗结构和片麻状构造.详细的野外地质研究表明, 超高压片麻岩作为超高压榴辉岩的围岩与含榴花岗岩呈渐变过渡关系, 或在含榴花岗岩中呈与面理平行的残留条带, 体现超高压片麻岩通过构造置换和部分熔融向含榴花岗岩转化.含榴花岗岩在常量元素的总体组成上, w(SiO2)为71.73%~79.15%;A/CNK为0.83~1.09, 平均0.98, 为准铝质; w(K2O+Na2O)为6.15%~9.00%, w(K2O)/w(Na2O)为0.16~1.54(绝大多数集中在0.9~1.1), 具有相对弱富钠-弱富钾特征.从标准矿物组成上看, 大别含榴花岗岩主要相当于奥长花岗岩; 山东含榴花岗岩主要相当于花岗岩; 东海含榴花岗岩主要相当于钾质花岗岩.在微量元素特征上, 含榴花岗岩的∑REE、∑LREE明显富集, δEu具有明显的负异常, 在原始地幔标准化蛛网图上, 相对亏损Nb、Ta、P、Zr、Ti等高场强元素及大离子亲石元素Sr, 富集Ba、La、Nd、Y、K等大离子亲石元素, 结合其贫w(Al)(平均11.6%)富w(Ga)(> 17×10-6)、(Fe/Mg)M(1.087~20.330)等特征, 表明其地球化学特征相当于非造山的A型花岗岩.结合前人超高压变质作用和构造演化等研究成果, 可以推断含榴花岗岩是超高压地体折返到中下地壳, 在底侵、构造体制转换等因素作用下, 由高压片麻岩的部分熔融形成的.含榴花岗岩在大别—苏鲁不同区域上的规律变化, 表明东海含榴花岗岩的出露相对于大别更低位.   相似文献   

3.
西准阿克巴斯陶铝质A型花岗岩厘定及意义   总被引:3,自引:0,他引:3  
岩石学和元素地球化学研究表明,阿克巴斯陶岩体属铝质A型花岗岩.该岩体以富硅(SiO2=74.51%~78.39%)、富碱(Na2O+K2O=7.87%~8.53%)和铝(Al2O3=11.8%~13.33%)、贫镁(MgO=0.15%~0.46%)、贫钙(CaO=0.45%~1.02%)和磷(P2O5=0.01%~0.06%),氧化指数变化较大(W=0.22~0.57),高FeOt/MgO比值(2.76~9.24,平均5.83)为特征.其K2ONa2O,NK/A=0.60~0.68,A/NCK=1.00~1.06,均大于1,属弱过铝质岩石.微量和稀土元素组成上,岩石富高场强元素(Zr和Hf等),亏损Ba,Nb,Ta,Y等元素.Zr+Nb+Ce+Y元素组合平均值(368.3×10-6)大于A型花岗岩下限值(350×10-6).在FeOt/MgO-Zr+Nb+Ce+Y和Rb/Ba-Zr+Ce+Y两类地球化学判别图解上均落入A型花岗岩区.δEu为0.038~0.130,铕强烈亏损,稀土分布曲线为"V"字型.上述特征表明,阿克巴斯陶岩体与国内外铝质A型花岗岩十分相似.在Nb-Y-Ce、AR-R1和R1-R2构造环境判别图上,显示出后造山花岗岩特征.阿克巴斯陶铝质A型花岗岩的厘定,对探讨西准噶尔地区构造演化问题具有重要意义.  相似文献   

4.
华南地区印支期花岗岩按照成因类型可分两类,第一类属强过铝质S型花岗岩,富含过铝质矿物,富SiO2、Al2O3和P2O5,高A/CNK值,微量元素原始地幔标准化分布型式图中富集Rb、U、Ta、Zr、Hf,亏损Ba、Sr、Nb、Ti;稀土元素球粒陨石标准化分布型式图中具显著的负Eu异常,稀土元素总量偏低(ΣREE<80×10-6);第二类属准铝质I型花岗岩,含角闪石等镁铁质矿物,富SiO2、Na2O。总体来说,这两类花岗岩具有高的(87Sr/86Sr)i值(0.710490~0.742118)和低εNd(t)值(-14.42~-4.1),Nd模式年龄(2.09~1.63Ga)指示印支期花岗岩为典型的壳源型花岗岩。CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT)(摩尔比)图解表明这些花岗岩主要来源于变质杂砂岩和变质泥岩的部分熔融,夹杂了少量变质玄武岩和变质英云闪长岩。华南印支期花岗岩形成于挤压加厚的地壳发生局部伸展-减薄时期,推断印支期发生了多期次的岩石圈挤压和拉张,花岗岩侵位于大规模岩石圈挤压后局部减压-伸展的构造环境中。  相似文献   

5.
湖南金鸡岭铝质A型花岗岩的厘定及构造环境分析   总被引:47,自引:4,他引:43  
湘南九嶷山中生代金鸡岭复式花岗岩体出露面积约 390 km2,由螃蟹木和金鸡岭岩体组成.该岩体以富 Si(SiO2 75.00%~ 76.86% )、富碱 (ALK 6.60%~ 8.88% )、贫 Mg (MgO 0.01%~ 0.19% )和 Ca (CaO 0.30%~ 0.93% )以及高 FeO /MgO比值 (7~ 86,平均 39)为特征.其 K2O/Na2O > 1、 NK/A=0.70~ 0.92(平均 0.86),A/CNK=1.00~ 1.20,属偏铝-过铝质钙碱-弱碱性岩石. 在微量元素和同位素组成上,岩石富 Ga、 Th、 Y、 Zr、 U和 Nb等高场强元素及亏损 Ni、 Cr、 Eu、 Ti、 V、 P和 Sr等元素. 10 000× Ga/Al比值 (2.9~ 4.9,平均 3.3)较高, Isr值 (0.713 01~ 2.957 41)变化大.在 Zr、 Nb、 Ce和 Y对 Ga/Al以及 FeO /MgO 和 (Na2O K2O)/CaO对 (Zr Nb Ce Y)等 A型花岗岩多种判别图上,投影点主要落在 A型花岗岩区,而与高分异的 I、 S型花岗岩明显不同.上述特征表明,金鸡岭复式花岗岩与国内外铝质 A型花岗岩 (如广东南昆山、江苏苏州和澳大利亚 Lachlan褶皱带铝质 A型花岗岩 )十分相似.与一般 A型花岗岩相比,金鸡岭复式花岗岩的ε Nd(t)(- 6.7~- 7.5)较低, Nd模式年龄 (1 486~ 1 556 Ma)小于区域上变质基底和中国东南部中生代花岗岩类的平均 Nd模式年龄,表明其主要来源于地壳物质的熔融,但可能有少量新生地幔物质加入.区域岩石地球化学和岩石组合特点显示 ,研究区铝质 A型花岗岩形成于大陆边缘裂谷环境.  相似文献   

6.
东昆仑造山带发育巨量显生宙花岗岩,记录了特提斯造山作用的岩浆—构造演化过程.本次研究以东昆仑丘吉东沟地区泥盆纪花岗岩体为研究对象,开展系统的岩石学、年代学和地球化学研究,厘定其成因类型,揭示岩石成因及其对原特提斯造山作用的启示.丘吉东沟花岗岩体由斑状花岗闪长岩组成,岩体内发育暗色微粒包体.LA-ICP-MS锆石U-Pb年代学分析显示,斑状花岗闪长岩形成于382.7±3.6 Ma,判定其为中泥盆世岩浆活动的产物,岩石具有富硅(w(SiO2)= 66.80%~73.15%)、富碱(w(K2O+Na2O)=7.07%~8.50%)和低铝(A/CNK=0.88~0.97)的特征,属于准铝质高钾钙碱性岩石.岩石的w(MgO)和w(FeO)分别为0.74%~1.77%和2.13%~4.98%,具有变化范围较大的Mg#值(21~50).岩石富集Zr,Nb,Ce和Y等高场强元素(Zr+Nb+Ce+Y=330~540X10-6),亏损Ba,Sr,P,Ti和Eu等元素.岩石的稀土分配模式呈右倾的"海鸥式"特征,具有显著的负Eu异常(8Eu=0.12~0.35)和较高的10 000 * Ga/Al比值(2.65~3.72),属于典型的A型花岗岩.构造判别图解指示岩石具有A2型花岗岩特征,形成于后碰撞伸展构造环境.综合分析表明,丘吉东沟泥盆纪A型花岗岩起源于低压高温条件下长英质地壳的部分熔融,具有一定的岩浆混合印记,其成因背景与东昆仑原特提斯域碰撞后伸展作用相关.  相似文献   

7.
通过对出露于西藏南部岗巴—定日地区花岗岩体的地球化学研究表明,岩石中SiO2,Al2O3,Na2O和FeO,MgO等的含量均高,贫CaO和Fe2O3;w(SiO2)介于71.40%~73.06%,A/CNK在1.17~1.34之间,为铝和硅过饱和类型的强过铝质花岗岩。岩石的稀土元素总量(ΣREE)为56.80×10-6~89.12×10-6,(La/Yb)N=6.30~18.26,(La/Sm)N=2.62~3.40,ΣLREE/ΣHREE=2.41~4.66;稀土元素配分曲线呈右倾型,具有弱的负铕异常。Nb,Ti等高场强元素具有明显的亏损,而Rb,U,La,Nd,Hf,Eu,Y等大离子亲石元素具有明显的正异常。岩石的87Sr/86Sr初始比值较高,87Sr/86Sr为(0.738 71~0.751 12)。综合研究认为,本区花岗岩的成因为陆壳部分熔融作用形成的,属陆壳改造型强过铝质花岗岩。本区花岗岩岩浆源区岩石成分主要为砂屑岩,其次为泥质岩,是上地壳部分熔融作用的结果。岩石的微量元素标准化曲线图、岩石地R1-R2图解、Rb-(Yb+Ta)和Rb-(Nb+Yb)图解均显示本区岩体形成于同碰撞构造环境的花岗岩,具有同碰撞岩浆活动的特征,是喜马拉雅早期印度板块与冈底斯板块的俯冲碰撞导致的地壳增厚,上地壳部分熔融的产物;为形成于同碰撞构造环境的花岗岩。  相似文献   

8.
东准噶尔贝勒库都克铝质A型花岗岩的厘定及意义   总被引:7,自引:0,他引:7  
初步研究表明,长期以来被认为S型花岗岩的贝勒库都克黑云母花岗岩应为铝质A型花岗岩.该岩体以富硅(SiO2=75.25%~76.67%)和碱(Na2O+K2O=8.08%~8.97%),贫镁(MgO=0.02%~0.18%)和钙(CaO =0.39%~0.89%),氧化指数变化较大(W=0.02~0.15)以及高FeOT/MgO比值(12.71~84.51,平均34.55)为特征.其K2O>Na2O,NK/A=0.86~0.95(平均0.92),A/CNK=0.97~1.02(>0.95),属偏铝-过铝质钙碱-弱碱性岩石.在微量元素和稀土元素组成上,岩石富Ga、Zr和Hf等高场强元素,亏损Ba、Nb、Sr等元素.10 000 Ga/Al比值(2.97~4.20)均大于A型花岗岩的下限值(2.6),明显高于I型和S型花岗岩的平均值(分别为2.10和2.28).在Zr、Ce、Nb对10 000 Ga/Al以及FeOT/MgO对(Zr+Nb+Ce+Y)、SiO2等A型花岗岩多种判别图上,投影点均落在A型花岗岩区,而与高分异的I、S型花岗岩明显不同.这些特征表明,贝勒库都克黑云母花岗岩与国内外铝质A型花岗岩(如福建沿海、东西准噶尔和澳大利亚Lachlan褶皱带铝质A型花岗岩)十分相似.在Nb-Y-Ce、R1-Ga/Al和R1-R2构造环境判别图上,显示出造山后花岗岩的特征.贝勒库都克铝质A型花岗岩的厘定,不仅对探讨卡拉麦里地区地壳物质组成及构造演化有着重要的地质意义,还为我国新疆北部寻找与铝质A型花岗岩有关的锡矿资源开辟了方向.  相似文献   

9.
青海祁漫塔格虎头崖矿区花岗岩地球化学特征及构造意义   总被引:1,自引:0,他引:1  
位于青海东昆仑祁漫塔格构造带内的虎头崖矿区花岗岩形成于中—晚三叠世,岩性主要由黑云母二长花岗岩、正长花岗岩组成,局部含闪长质暗色包体。岩石高硅、高钾、富碱,SiO2含量为70.71%~77.67%;K2O含量平均为4.7%;Na2O+K2O为7.86%~9.1%;K2O/Na2O平均为1.36。A/CNK比为1.01,KN/A比为0.86,属于高钾钙碱性系列的微过铝质I型花岗岩类。∑REE含量中等,平均为120.10×10-6;δEu值0.04~0.47;(La/Yb)N值为1.52~8.06。稀土元素球粒陨石标准化曲线显示Eu负异常、HREE较平坦的右倾"V"型特征。岩体富集LIL和HFS元素,而Ba、Sr、Nb、Ti、P元素明显的负异常。微量元素蛛网图和稀土元素球粒陨石标准化图解显示各花岗岩体具有相同的岩浆源区。结合区域地层岩性特征、A/MF-C/MF图解和岩体微量元素蛛网图,认为虎头崖矿区花岗岩是基性源区部分熔融和地壳物质混合的产物。结合地质特征、构造演化背景、元素判别图解等,认为该地区花岗岩类形成的构造环境为碰撞造山期后阶段。  相似文献   

10.
滇西点仓山构造带新生代岩浆活动及其构造意义   总被引:1,自引:0,他引:1  
点苍山构造带是哀牢山-金沙江大型走滑构造带的重要组成部分。构造带内新生代花岗岩以发生糜棱岩化韧性变形和含有富铝含水矿物-黑云母和白云母为特征。锆石LA-ICP-MS U-Pb定年结果表明花岗岩和混合岩化花岗岩脉的形成时代分别为27.9±0.7Ma、28.5±0.5Ma和34.8±0.4Ma,样品11QDC-34中3个点206Pb/238U年龄22~24Ma是对后期叠加构造变形变质作用的响应。岩石地球化学分析结果表明花岗岩具有高硅(SiO270.95%)、富碱(Na2O+K2O=7.16%~8.44%)、高钾(Na2O/K2O1.0)、富铝(Al2O313.48%,A/CNK多大于1.1)的S型花岗岩岩石学特征。花岗岩LREE/HREE比值变化较大,δEu在0.13~0.75之间,以及在微量元素蛛网图上展示出的大离子亲石元素(LILE)Rb和K,放射性生热元素Th和U及亲岩浆元素Ce、La、Zr和Hf相对原始地幔强烈富集,高场强元素(HSFE)Nb、P、Ti、Sr和LILE中的Ba表现出明显的负异常,以及在Th/Yb-Ba/La和Th/Yb-Sr/Nd判别图解中,样品沿沉积岩熔融体演化趋势线分布,在Rb/Ba-Rb/Sr图解中分布于页岩和砂岩部分熔融区,揭示其岩浆来源于壳源物质低度部分熔融的产物。构造带中花岗岩体(脉)普遍发生不同程度糜棱岩化韧性变形、同一岩体不同部位糜棱岩化程度存在较大差异及锆石结晶温度远高于糜棱岩的角闪岩相变质温度说明点苍山深变质带大规模韧性走滑剪切作用发生于28Ma之后。  相似文献   

11.
皖南绩溪伏岭岩体岩石地球化学特征   总被引:12,自引:0,他引:12       下载免费PDF全文
通过详细的野外填图和地球化学研究,发现皖南伏岭岩体具有高硅、富铝、富碱,富集高场强元素,富集REE,高Rb、低Sr、Ba的特点,属于铝质A型花岗岩。地球化学特点表明岩浆由下地壳部分熔融产生;岩体是在造山后伸展构造环境中沿断裂快速上升定位、分异作用不完全状态下形成。  相似文献   

12.
13.
新疆北部的改造系列花岗岩演化由斜长花岗岩阶段、钾长花岗岩阶段至碱长花岗岩阶段,其稀土配分组成递降曲线簇.新疆北部的同熔型花岗岩类稀土配分基本为轻稀土富集型,具Eu负异常,有递增曲线簇和递降曲线簇两种情况.深源碱性系列轻重稀土比值大、Eu负异常一般不显著.文中还叙述了新疆北部的幔分异系列花岗岩类及一些古老花岗岩的稀土特征.  相似文献   

14.
太平洋东西两岸花岗岩的相似性   总被引:2,自引:1,他引:2       下载免费PDF全文
传统的看法多认为太平洋东西两岸花岗岩是截然不同的两类花岗岩。根据对美国西部实地考察,结合笔者长期对华南花岗岩的研究结果,可以看出两岸花岗岩在形成时代、成因类型、地理分布、成矿种类和演化等方面是类似或相同的。  相似文献   

15.
分布于巴音诺日公地区的中三叠世花岗岩可分为两个超单元。早超单元属陆—陆碰撞同造山期S型花岗岩,单颗粒锆石U-Pb同位素年龄值234±8Ma;晚超单元属陆—陆碰撞造山后—非造山期A型花岗岩,单颗粒锆石U-Pb同位素年龄值235±4Ma。说明该区中三叠世华北板块与塔里木板块发生陆—陆碰撞造山,随后地壳的构造环境由挤压向拉张转化。  相似文献   

16.
青海南山地区位于南祁连构造带和西秦岭造山带的交接部位,在该地区元古宇变质地层中新厘定出一套含石榴子石白云母二长花岗岩,并对其进行了详细的岩石学、岩石地球化学和LA-ICP-MS锆石U-Pb定年研究。结果表明,浪日娘含石榴子石白云母二长花岗岩结晶年龄为438.7±4.2Ma,形成于早志留世早期。岩石含石榴子石、白云母、电气石等高铝矿物,同时具高SiO_2、富Al_2O_3特征,高铝饱和指数A/CNK=1.09~1.28,属高钾钙碱性强过铝质S型花岗岩;微量元素富集大离子亲石元素Cs、Rb、U、K和Pb,亏损高场强元素Nb、Ti、Zr、P和Ba、Sr;稀土元素总量低,配分曲线为轻稀土元素富集的右倾模式,具有弱-中等负Eu异常。高Rb/Sr值(1.83~3.95)、低CaO/Na_2O值(0.11~0.19),伴随有Pb正异常和Ba负异常,暗示源区物质成分为泥质岩并经历了缺水熔融条件下的白云母脱水熔融。结合岩体年龄及区域地质资料,推断其可能形成于原特提斯洋闭合碰撞造山过程。  相似文献   

17.
走滑断裂带的两类花岗岩   总被引:3,自引:3,他引:0  
大型走滑断裂带,由于在水平方向的运动,导致两个区域发生扩张;另两个区域发生压缩。前者控制了拉分火山沉积盆地,形成了与火山作用同源的走滑—拉分张裂型侵入岩;后者控制了菱形地垒,形成了走滑—挤压隆起型花岗岩。这两类花岗岩同时产于同一走滑断裂带的不同部位,因其构造环境不相一致,在宏观上以被动就位和强力就位而有明显区分;在微观上以岩石化学等物质组分或趋近典型的张裂性花岗岩套,或趋近典型的挤压性花岗岩套,而泾渭分明。首次发现的这两类花岗岩并存的实例,为产于辽吉黑东部鸭绿江断裂带中的东宁老黑山—珲春农坪的走滑—拉分张裂型花岗岩套和浑江荒沟山走滑—挤压隆起型花岗岩套。它们形成的时代均属晚三叠世。  相似文献   

18.
The Baingoin batholith is one of the largest granitic plutons in the North Lhasa terrane. Its petrogenesis and tectonic setting have been studied for decades, but remain controversial. Here we report data on geochronology, geochemistry and isotopes of Early Cretaceous granitoids within the Baingoin batholith, which provide more evidence to uncover its petrogenesis and regional geodynamic processes. The Early Cretaceous magmatism yields ages of 134.4–132.0 Ma and can be divided into I-type, S-type and highly fractionated granites. The I- and S-type granites exhibit medium SiO2, high K2O/Na2O with negative εNd(t) and εHf(t) values, whereas, the albite granites have very high SiO2 (79.04%–80.40%), very low K2O/N2O, negative εNd(t) and a large variation in εHf(t). Our new data indicate that these granitoids are derived from unbalanced melting in a heterogeneous source area. The granodiorites involved had a hybrid origin from partial melting of basalt-derived and Al-rich rocks in the crust, the porphyritic monzogranites being derived from partial melting of pelitic rocks. The albite granites crystallized from residual melt separated from K-rich magma within the ‘mush’ process and underwent fractionation of K-feldspar. We believe that the Early Cretaceous magmatism formed in an extensional setting produced by the initial and continuous rollback of a northward-subducting slab of the NTO.  相似文献   

19.
东昆仑金水口过铝花岗岩的地球化学研究   总被引:13,自引:0,他引:13  
余能  金巍  葛文春  龙晓平 《世界地质》2005,24(2):123-128
东昆仑金水口二级电站附近的加里东期花岗岩包括堇青石二长花岗岩和黑云花岗闪长岩。两类花岗岩具有相似的主元素特征:较高CaO、FeOT、MgO含量,低Na2O,K2O,DI>88,A/CNK>1.1,刚玉分子C>1.2;有区别的稀土元素特征:δEu分别为0.41~1.01,0.81~2.51,(La/Yb)N分别为3.18~4.74,4.18~18.56;相同的Nd-Sr同位素组成:εN(dt)为-9.0~-12.8,87Sr/86Sr为0.7205~0.7570。两类花岗岩均为典型的S型过铝花岗岩。其Nd模式年龄为1.7~2.1Ga,表明金水口花岗岩可能为柴达木地块元古宙基底部分熔融的产物。金水口花岗岩的微量元素特征暗示其形成于岛弧环境。  相似文献   

20.
Two mineralogically different rare metal granites located in two distinct terranes from the Tuareg area are compared: the Tin-Amzi granite in the north of the Laouni Terrane and the Ebelekan granite in the Assodé–Issalane Terrane.The Tin-Amzi granite is enclosed within Eburnean granulitic gneisses, and consists of albite, quartz, protolithionite, K-feldspar and topaz granite (PG). The accessory minerals include columbite tantalite, U- and Hf-rich zircon, Th-uraninite, wolframoixiolite and wolframite. This facies is characterised by a mineralogical evolution from the bottom to the top underlined by a strong resorption of K-feldspar and albite and the crystalliK-feldspar of more abundant topaz and protolithionite II which is further altered in muscovite and Mn-siderite. It is underlain by an albite, K-feldspar, F-rich topaz, quartz and muscovite granite (MG), with W–Nb–Ta oxides, wolframite, Nb-rutile, zircon and scarce uranothorite as accessories.The Ebelekan granite intrudes into a coarse-grained biotite granite enclosed within upper amphibolite-facies metasediments. It comprises a zinnwaldite, albite, topaz porphyritic granite (ZG) with “snow ball” quartz and K-feldspar. The accessories are zircon, monazite, uranothorite, Ta bearing cassiterite, columbite tantalite and wodginite. It is capped by a banded aplite-pegmatite (AP).The geochemistry of Tin-Amzi and Ebelekan granites is nearly comparable. Both are peraluminous (A/CNK=1.10–1.29; ASI=1.17–1.31), sodolithic and fluorine rich with high SiO2, Al2O3, Na2O+K2O, Rb, Ga, Li, Ta, Nb, Sn and low FeO, MgO, TiO2, Ba, Sr, Y, Zr and REE contents. These rare metal Ta bearing granites belong to the P-poor subclass, relating to their P2O5 content ( 0.03–0.15 wt.%). Nevertheless, they are distinguished by their concentration of W, Sn and Ta. The Tin-Amzi granite is W–Ta bearing with high W/Sn ratio whereas the Ebelekan granite is Ta–Sn bearing with insignificant W content.At Tin-Amzi the W–Nb–Ta minerals define a sequence formed by W-columbite tantalite followed by wolframoixiolite and finally wolframite showing the effect of hydrothermal overprinting with an extreme W enrichment of the fluids. At Ebelekan, the Sn–Nb–Ta oxides follow a Mn sequence: manganocolumbite→manganotantalite→wodginite+titanowodginite→cassiterite that represents a trend of primary crystallisation resulting from progressive substitution Fe→Mn and Nb→Ta during the magmatic fractionation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号