首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
以松辽盆地东南缘营城组二段两类火山碎屑岩(沉凝灰岩、凝灰质砂岩)为研究对象, 进行了火山碎屑粒度特征、碎屑组成和火山碎屑岩相研究.结果显示, 火山碎屑搬运除受火山作用激发控制外, 还受牵引流、重力流以及牵引流和重力流的双重机制影响.火山碎屑微观特征、成因分析和岩相分析认为, 本区火山碎屑堆积主体为热基浪堆积和热碎屑流堆积, 部分为空落堆积.火山碎屑组成特征为晶屑含量多, 玻屑和岩屑含量少, 且岩屑仅在较粗粒级颗粒组成中存在.研究认为, 本区发育的火山碎屑为沉积环境中的再搬运火山碎屑, 共识别出4种火山碎屑岩相, 河流故道上的热基浪, 河流故道上的热碎屑流, 冲积平原上的热基浪和空落相.建立了松辽盆地东南缘露头区营城组二段河流-冲积平原沉积环境的再搬运火山碎屑岩相模式.   相似文献   

2.
以松辽盆地东南缘营城组二段两类火山碎屑岩(沉凝灰岩、凝灰质砂岩)为研究对象,进行了火山碎屑粒度特征、碎屑组成和火山碎屑岩相研究.结果显示,火山碎屑搬运除受火山作用激发控制外,还受牵引流、重力流以及牵引流和重力流的双重机制影响.火山碎屑微观特征、成因分析和岩相分析认为,本区火山碎屑堆积主体为热基浪堆积和热碎屑流堆积,部分为空落堆积.火山碎屑组成特征为晶屑含量多,玻屑和岩屑含量少,且岩屑仅在较粗粒级颗粒组成中存在.研究认为,本区发育的火山碎屑为沉积环境中的再搬运火山碎屑,共识别出4种火山碎屑岩相,河流故道上的热基浪,河流故道上的热碎屑流,冲积平原上的热基浪和空落相.建立了松辽盆地东南缘露头区营城组二段河流-冲积平原沉积环境的再搬运火山碎屑岩相模式.  相似文献   

3.
乔乐  陈剑  凌宗成 《地质学报》2021,95(9):2678-2691
火山活动是月球最主要的内动力地质作用之一,是研究月球地质历史和热演化的重要窗口,也是月球科学及探测的重点目标.本文概要总结了月球火山作用的基本原理,并重点介绍了"岩墙扩展"模型.基于此模型,列举了由于岩墙在月壳内部上升程度的不同,导致的不同形式的喷发活动,并在月表产生了一系列火山地貌特征:① 当岩墙仅扩展到浅月表、未能穿透月壳并引起喷发活动时,可能会在月表产生坑链构造、地堑或底部断裂型撞击坑;② 当岩墙穿透了整个月壳并引起爆裂式喷发活动时,会在月表产生小型火山锥、区域性火山碎屑堆积物、全月分布的微小火山玻璃、暗晕凹陷构造及环形火山碎屑堆积物;③ 当岩墙穿透了整个月壳并引起溢流式喷发活动时,随着岩浆喷发通量的逐步增高,会在月表产生小型熔岩流、月海穹窿、复合熔岩流、蜿蜒型月溪、巨型熔岩流及火山高原复合体.本文也简要介绍了在月表观测到的若干非典型火山地貌特征,包括不规则月海斑块、环形凹陷穹丘及非月海富硅质穹窿.近年来新的探月数据加深了对这些特殊火山地貌特征的认识,但是更多的地质特征及成因模型细节仍有待未来月球研究及探测去解决.  相似文献   

4.
吉林龙岗火山群火山碎屑基浪堆积特征与成因机理   总被引:9,自引:0,他引:9  
吉林龙岗火山群火山碎屑基浪堆积是中国少数保存较好的、近代喷发的低平火山区之一。基于岩性、岩相与相序的识别与分析,火山碎屑基浪堆积序列由分选性和磨圆度较差的玄武质砂、砾和火山灰构成的毫米级-厘米级厚高频率韵律有序叠置而成,堆积物中发育大量的块状层理、似丘状层理、低角度板状交错层理、槽泊层理、平行层理、冲蚀槽等堆积构造。横向上低平火山由内至外其碎屑粒度、堆积构造、厚度存在着一定规律变化,与易混淆的火山岩区地面流水沉积和火山碎屑流堆积物存在明显的差别。岩浆射汽喷发晚期往往伴随斯通博利式喷发和夏威夷式熔岩流,三者构成一个完整火山活动旋回。  相似文献   

5.
水下火山喷发作用机制不同于陆地环境喷发,随着水参与程度的变化,喷发机制趋向复杂。本文以雷琼火山群的湛江硇洲岛作为研究对象,聚焦浅海火山产物的判断依据和水下火山喷发机制。硇洲岛是我国最大的第四纪火山岛,其上的那晏湾剖面保留了完整的火山喷发堆积序列。在那晏湾剖面的凝灰岩中,主要有三类火山成因的大粒径原生碎屑(2-5mm):塑变熔岩碎屑、碎玄玻璃及玄武玻璃,推断为不同程度水-岩浆相互作用的产物,根据水的参与程度大致排序为:碎玄玻璃>玄武玻璃>塑变熔岩碎屑。通过对硇洲岛水-火山作用机制研究,发现水-岩浆混合质量比(Mwater/Mmelt)是控制爆炸强度和火山碎屑粒度的关键因素。火山喷发序列分析表明,硇洲岛的喷发过程总体可分为三期,早期是冰岛苏特塞式喷发的浅水环境蒸汽爆炸与“火喷泉”喷发;中期过渡转为“火喷泉”喷发,伴随陆上的射汽岩浆喷发;最终以岩浆溢流式喷发结束。  相似文献   

6.
魏海泉  白志达  刘永顺 《地质论评》2022,68(3):2022052009-2022052009
火山碎屑岩是爆破性火山喷发行为的直接产物,不同的碎屑成分、粒度及结构反映了不同岩相的堆积动力学过程,对火山碎屑岩岩石学和岩相组合的研究发展成了以物理火山学为代表的现代火山学研究体系。作为火山爆发碎屑物质的集合,其中不同成因类型的火山碎屑物往往可以直接对应不同阶段火山作用动力学参数特征。火山碎屑物3个最基本的堆积物成因类型是火山碎屑降落物、火山碎屑流和火山碎屑涌浪。火山喷发时碎屑化过程主要涉及挥发分的出溶和岩浆碎屑化过程以及不同火山流体内部的碎屑化过程。对于岩浆喷发、射汽岩浆喷发以及射汽喷发的直接产物,火山碎屑岩在组成上都包含了岩浆破碎的同源碎屑、火山通道裹进的异源碎屑以及火山流体在地表流动时捕获的表生碎屑。火山碎屑定义为爆破性火山喷发的直接行为产物,而包括坡移、滑坡体、火山泥石流等火山降解过程的表生碎屑与熔岩流在自生、淬碎碎屑化过程产生的碎屑则被定义为火山质碎屑。火山岩岩相的建立,为20世纪80年代后期向火山学研究阶段的转变奠定了基础。在地质研究的基础上探索火山活动过程和控制机制的经验模型、实验模拟和数值模拟研究,其中流体动力学的介入对理解火山喷发的基本过程具有里程碑式的推动意义。由此形成的火山学是研究火山与火山喷发的形成机理、喷发过程和产物特性的科学。  相似文献   

7.
魏海泉  白志达  刘永顺 《地质论评》2022,68(5):1918-1941
火山碎屑岩是爆破性火山喷发行为的直接产物,不同的碎屑成分、粒度及结构反映了不同岩相的堆积动力学过程,对火山碎屑岩岩石学和岩相组合的研究发展成了以物理火山学为代表的现代火山学研究体系。作为火山爆发碎屑物质的集合,其中不同成因类型的火山碎屑物往往可以直接对应不同阶段火山作用动力学参数特征。火山碎屑物3个最基本的堆积物成因类型是火山碎屑降落物、火山碎屑流和火山碎屑涌浪。火山喷发时碎屑化过程主要涉及挥发分的出溶和岩浆碎屑化过程以及不同火山流体内部的碎屑化过程。对于岩浆喷发、射汽岩浆喷发以及射汽喷发的直接产物,火山碎屑岩在组成上都包含了岩浆破碎的同源碎屑、火山通道裹进的异源碎屑以及火山流体在地表流动时捕获的表生碎屑。火山碎屑定义为爆破性火山喷发的直接行为产物,而包括坡移、滑坡体、火山泥石流等火山降解过程的表生碎屑与熔岩流在自生、淬碎碎屑化过程产生的碎屑则被定义为火山质碎屑。火山岩岩相的建立,为20世纪80年代后期向火山学研究阶段的转变奠定了基础。在地质研究的基础上探索火山活动过程和控制机制的经验模型、实验模拟和数值模拟研究,其中流体动力学的介入对理解火山喷发的基本过程具有里程碑式的推动意义。由此形成的火山学是研究火山与火山喷发的形成机理、喷发过程和产物特性的科学。  相似文献   

8.
<正>关于月幔中挥发分(H2O-Cl-F-S)的浓度一直存在争论:(1)对月球火山玻璃、火山碎屑中橄榄石内的熔体包裹体以及月球高地斜长石晶体的研究表明,月幔中水的含量为~×10-6。(2)月海玄武岩中中度挥发性元素Zn/Fe值约为地球的1/10~1/500,依此估计的月幔中水的浓度不大于1×10-6,并且月球火山样品74220中橄榄石内的玻璃质熔体包裹体具有的高水含量特征是一个局部异常。月幔中水含量究竟如何?高挥发分特征的火山玻璃样  相似文献   

9.
赵波  许建东  潘波  于红梅 《岩石学报》2008,24(11):2631-2637
龙泉龙湾是射汽岩浆爆发形成的复合式低平火山口湖。龙泉龙湾火山近火口基浪堆积物地层特征为含有火山弹的厚层粗粒-细粒火山砂与薄层细粒火山砂的韵律层,发育气管构造、透镜体构造、下陷构造、U型下蚀堆积构造和丘状构造等。碎屑粒度中值Mdφ为-2.8~1.8,分选系数σφ为1.38~3.23,整体粒径大、分选差。碎屑成分主要是浮岩碎屑、基岩碎屑和晶屑。本文在火山地层堆积构造和粒度特征研究基础上,通过应用SFT分布模式分析发现,龙泉龙湾火山近火口火山碎屑动力学模式主要以牵引为主,其次为弹道和跳跃,悬浮相对较少。  相似文献   

10.
大兴安岭哈拉哈河—淖尔河地区第四纪火山活动初步研究   总被引:16,自引:11,他引:5  
大兴安岭中部哈拉哈河-淖尔河地区受基底断裂控制,发育28座第四纪火山,这些火山总体呈北东向带状分布。研究区第四纪火山岩分布面积约1000km^2,岩性主要为碱性玄武岩。根据喷发时代和火山地质特征,这里的火山大体可分为更新世和全新世两期。按照火山作用方式不同,区内火山可分为岩浆成因和射汽岩浆成因两类:前者活动产物主要包括火山碎屑锥、碎屑席、熔岩流,其中发育结壳熔岩、渣状熔岩、块状熔岩,以及喷气锥、熔岩冢等火山地质现象;后者产物主要是射汽岩浆喷发形成的基浪堆积物,其中发育大型平行层理及交错层理。不同的火山作用形成了火山口湖、低平火山口湖、火山堰塞湖和塌陷熔岩湖四种不同规模与形态特征的湖泊,这种水火相容的火山地质现象为阿尔山火山温泉国家地质公园增添了景观。  相似文献   

11.
芨岭铀矿床是解析龙首山成矿带铀成矿作用的关键所在.通过地质编录、镜下观察、电子探针和地球化学特征研究,综合矿床与周边铀矿点的蚀变和地球化学特征,将热液作用分为成矿前、成矿早期、主成矿、后成矿和成矿后等5个阶段.自矿体中心向外(A→F)的6个蚀变带中Na2O、U含量递减,SiO2和Rb含量呈宽缓的"U"型,FeO和MgO在A和E带中形成双峰,而P2O5和HREE则在A和D带含量较高,TiO2、Fe2O3、CaO、MnO、CO2、Zr、V、Cs、REE等组分主要富集于B、C和D带.成矿流体是起源于岩浆演化晚期的再平衡岩浆水,富含Na+、U6+、CO32-.逆向沸腾是主要的成矿机制,pH和Eh的变化进一步促进了沥青铀矿的沉淀.以蚀变组合分带与铀矿化关系为指导,有望在龙首山成矿带中段落实一个大型铀矿基地.   相似文献   

12.
Olivine-hosted glass inclusions were investigated from tephra samples erupted at Parícutin volcano on four different dates: May 26 and August 1, 1943; January 23, 1945; and March 31, 1948. These dates span the first two thirds of the 9 year eruption, during which time the tephra/lava mass-eruption rate fell dramatically. They also span the strong whole-rock compositional shift of 1947, attributed to the increased importance of crustal contamination. Nine of the 26 analyzed glass inclusions have lower SiO2 contents than any previously analyzed Parícutin lava sample, ranging to below 53 wt%. These silica-poor glasses are found in olivines erupted in 1943 and 1945, and provide evidence for melts that are parental to the main Parícutin lava suite. Total water contents in the glass inclusions measured by Fourier transform infrared (FTIR) spectroscopy vary considerably in all individual samples, with a total range of 1.8-4.0 wt%. Total water contents are not correlated with SiO2 of the glass, Mg# of the adjacent host olivine, or eruption date. Only two glass inclusions have carbonate contents (248 and 296 ppm CO2) above the FTIR detection limit of ~50 ppm CO2; importantly, these inclusions also have the highest total water contents and among the highest SO3t values. These two inclusions were trapped at minimum depths of 9.0-9.6 km beneath the volcano. Thus, early degassing likely stripped most carbon from Parícutin melts at mid-crustal levels. Other glass inclusions yield minimum entrapment depths of 1.3-5.1 km based on water solubility limits. Total sulfur (0.30 to 0.01 wt% SO3) declines as SiO2 contents increase from 52.7 to 60.5 wt%. This trend and the wide range of glass inclusion total water contents are interpreted to reflect degassing accompanied by fractional crystallization and assimilation at upper crustal levels.  相似文献   

13.
Garnets and clinopyroxenes, intergrown with diamonds in 37 diamondites (“bort”, “polycrystalline diamond aggregates”, “polycrystalline diamond”, “framesite”), presumably from southern Africa, were analyzed for trace element contents by LA-ICP-MS. The intimate diamond-silicate intergrowths suggest that both precipitated from the same fluids during the same crystallization events. In this study we distinguish 5 chemical garnet groups: “peridotitic” (P), intermediate (I) and 3 “eclogitic” groups (E1, E2 and E3). Chondrite-normalized trace element patterns for the garnet groups roughly correlate with major element abundances. Most of P garnets show complex, mildly sinusoidal REEN patterns with relatively flat HREEN-MREEN, a small hump at Sm-Nd and depleted LREEN, and have relatively high contents of Nb, Ta, U, and Th. The REEN abundance patterns of E garnets differ by showing a continuous increase from LREE to HREE and depletion in LREE and highly incompatible elements relative to the P garnets. Of all garnet groups, E3 garnets are the poorest in highly incompatible trace elements and in Mg. Model equilibrium fluids for P garnets suggest crystallization from magnesian carbonate-bearing fluids/melts, which were very rich in incompatible trace elements — similar to kimberlites. Hypothetical equilibrium melts for E1 and E2 garnets are also magnesian and poorer in LREE and highly incompatible elements relative to typical kimberlitic or carbonatitic melts. Fluids that crystallized the P and most of the E garnets have similar mg numbers indicating a peridotitic source for both. The differences in Cr and highly incompatible element contents can be the result of differences in fluid formation and/or evolution rather than different source rock. The positive correlation of Cr2O3 and mg with the abundances of highly incompatible elements in garnets indicate fluid-rock fractionation processes rather than igneous fractional crystallization processes being responsible for the evolution of the diamondite-forming fluids.  相似文献   

14.
Mineral water contents, together with the elements and isotopes of minerals and whole‐rock, were determined for garnet pyroxenites enclosed by ultrahigh‐pressure (UHP) metamorphic gneiss at Hujialin in the Sulu orogen. The results suggest that the garnet pyroxenites were generated in the Triassic by metasomatic reaction of the mantle wedge peridotite with hydrous felsic melts derived from partial melting of the deeply subducted continental crust. Measured water contents vary from 523 to 1213 ppm for clinopyroxene, and 55 to 1476 ppm for garnet. These mineral water contents are not only correlated with mineral major and trace element abundances but also relatively homogenous within single mineral grains. Such features preclude significant disturbance of the mineral water contents during pyroxenite exhumation from the mantle depth to the surface and thus indicate preservation of the primary water contents for the UHP metasomatites. The garnet pyroxenites are estimated to have bulk water contents of 424–660 ppm, which are higher than those for the MORB source, similar to or higher than those for the OIB sources and close to the lower limit for the arc magma source. The relationships between contents of mineral water and some elements suggest that the high water contents of garnet pyroxenites are primarily determined by the abundance of water‐rich clinopyroxene. Calculated whole‐rock H2O/Ce ratios are 63–145, higher than those for Hawaiian garnet pyroxenites and SWIR abyssal pyroxenites. These observations suggest that metasomatic pyroxene‐rich lithologies have the capacity to contribute high H2O concentrations and variable H2O/Ce ratios to the mantle. This lends support to the interpretation that the source of some intraplate basalts may be a heterogeneous mixture of peridotite and pyroxenite. On the other hand, the high water contents of garnet pyroxenites suggest that the ultramafic metasomatites are an important water reservoir in the mantle wedge.  相似文献   

15.
Corundum (α-Al2O3) solubility was measured in 0.1-molal CaCl2 solutions from 400 to 600°C between 0.6 and 2.0 kbar. The Al molality at 2 kbar increases from 3.1 × 10−4 at 400°C to 12.7 × 10−4 at 600°C. At 1 kbar, the solubility increases from 1.5 × 10−4m at 400°C to 3.4 × 10−4m at 600°C. These molalities are somewhat less than corundum solubility in pure H2O (Walther, 1997) at 400°C but somewhat greater at 600°C. The distribution of species was computed considering the Al species Al(OH)30 and Al(OH)4, consistent with the solubility of corundum in pure H2O of Walther (1997) and association constants reported in the literature. The calculated solubility was greater than that measured except at 600°C and 2.0 kbar, indicating that neutral-charged species interactions are probably important.A Setchénow model for neutral species resulted in poor fitting of the measured values at 1.0 kbar. This suggests that Al(OH)30 has a greater stability relative to Al(OH)4 than given by the models of Pokrovskii and Helgeson (1995) or Diakonov et al. (1996). The significantly lower Al molalities in CaCl2 relative to those in NaCl solutions at the same concentration confirm the suggestions of Walther (2001) and others that NaAl(OH)40 rather than an Al-Cl complex must be significant in supercritical NaCl solutions to give the observed increase in corundum solubility with increasing NaCl concentrations.  相似文献   

16.
Three thin, syn-caldera ash flow tuffs of the Suswa volcano, Kenya, contain pumiceous clasts and globules of trachytic glass, and clasts rich in carbonate globules, in a carbonate ash matrix. Petrographic and textural evidence indicates that the carbonate was magmatic. The trachyte is metaluminous to mildly peralkaline and varies from nepheline- to quartz-normative. The carbonate is calcium-rich, with high REE and F contents. The silicate and carbonate fractions have similar 143Nd/144Nd values, suggesting a common parental magma. Chondrite-normalized REE patterns are consistent with a carbonate liquid being exsolved from a silicate liquid after alkali feldspar fractionation. Sr isotopic and REE data show that the carbonate matrix of even the freshest tuffs interacted to some degree with hydrothermal and/or meteoric water. A liquid immiscibility relationship between the trachyte and carbonate is indicated by the presence of sharp, curved menisci between them, the presence of carbonate globules in silicate glass and of fiamme rich in carbonate globules separated by silicate glass, and by the fact that similar phenocryst phases occur in both melts. It is inferred that the carbonate liquid separated from a carbonated trachyte magma prior to, or during, caldera collapse. Viscosity differences segregated the magma into a fraction comprising silicate magma with scattered carbonate globules, and a fraction comprising carbonate globules in a silicate magmatic host.Explosive disruption of the magma generated silicate-and carbonate-rich clasts in a carbonate matrix. The silicate liquid was disaggregated by explosive disruption and texturally appears to have been budding-off into the carbonate matrix. After emplacement, the basal parts of the flows welded slightly and flattened. The Suswa rocks represent a rare and clear example of a liquid immiscibility relationship between trachyte and carbonate melts.  相似文献   

17.
Major element analyses of nineteen Luna 20 glass particles indicate that most of the Luna 20 glasses have Al2O3 contents greater than 21 wt.% and compositions similar to Apollo 10 and Luna 20 rocks and soils. Three of the glass particles have low Al2O3 (< 13 wt.%) and high FeO (> 18 wt.%) contents and were probably derived from one of the adjacent maria. The low glass content of the Luna 20 soil indicates that it is relatively young or less mature than most mare soils that have been studied.  相似文献   

18.
The angrites are a small and heterogeneous group of achondritic meteorites with highly unusual chemical and mineralogical features. The abundant presence of glasses in D'Orbigny makes this rock a unique member of the angrite group. Glasses fill open spaces, form pockets, and occur as inclusions in olivines. Their physical settings exclude an incorporation from an external source. Major and trace element (rare earth elements [REE], Li, B, Be, transition elements, N and C) contents of these glasses and host olivines were measured combining laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), secondary-ion mass spectrometry (SIMS), Nuclear Reaction Analysis (NRA), and EMP techniques. Based on the major element composition, glasses filling voids could represent either a melt formed by melting an angritic rock or a melt from which angrites could have crystallized. Trace element contents of these glasses strongly indicate a direct link to the D'Orbigny bulk meteorite. They are incompatible with the formation of the glasses by partial melting of a chondritic source rock or by shock melting. The refractory elements (e.g., Al, Ti, Ca) have about 10 × CI abundances with CaO/TiO2 and FeO/MnO ratios being approximately chondritic. Trace element abundances in the glasses appear to be governed by volatility and suggest that the refractory elements in the source had chondritic relative abundances. Although the glasses (and the whole rock) lack volatile elements such as Na and K, they are rich in some moderately volatile elements such as B, V, Mn, Fe (all with close to CI abundances), and Li (about 3-5 × CI). These elements likely were added to the glass in a sub-solidus metasomatic elemental exchange event. We have identified a novel mechanism for alteration of glass and rock compositions based on an exchange of Al and Sc for Fe and other moderately volatile elements in addition to the well-known metasomatic exchange reactions (e.g., Ca-Na and Mg-Fe).Because glass inclusions in olivine were partly shielded from the metasomatic events by the host crystal, their chemical composition is believed to be closer to the original composition than that of any other glasses. The relative trace element abundances in glasses of glass inclusions in olivine and glass pockets are also unfractionated and at the 10 to 20 × CI level. These glasses are chemically similar to the common void-filling glasses but show a much wider compositional variation. Inclusion glasses demonstrate that at least olivine grew with the help of a liquid. In analogy to olivines in carbonaceous chondrites, initial formation could also have been a vapor-liquid-solid condensation process. At that time, the glass had a purely refractory composition. This composition, however, was severely altered by the metasomatic addition of large amounts of FeO and other moderately volatile elements. The presence of volatile elements such as carbon and nitrogen in glasses of glass inclusions is another feature that appears to give these glasses a link with those hosted by olivines of carbonaceous chondrites. All these features point to an origin from a vapor with relative abundances of condensable elements similar to those in the solar nebula.  相似文献   

19.
A large body of recent work has linked the origin of Si-Al-rich alkaline glass inclusions to metasomatic processes in the upper mantle. This study examines one possible origin for these glass inclusions, i.e., the dissolution of orthopyroxene in Si-poor alkaline (basanitic) melt. Equilibrium dissolution experiments between 0.4 and 2 GPa show that secondary glass compositions are only slightly Si enriched and are alkali poor relative to natural glass inclusions. However, disequilibrium experiments designed to examine dissolution of orthopyroxene by a basanitic melt under anhydrous, hydrous and CO2-bearing conditions show complex reaction zones consisting of olivine, ± clinopyroxene and Si-rich alkaline glass similar in composition to that seen in mantle xenoliths. Dissolution rates are rapid and dependent on volatile content. Experiments using an anhydrous solvent show time dependent dissolution rates that are related to variable diffusion rates caused by the saturation of clinopyroxene in experiments longer than 10 minutes. The reaction zone glass shows a close compositional correspondence with natural Si-rich alkaline glass in mantle-derived xenoliths. The most Si-and alkali-rich melts are restricted to pressures of 1 GPa and below under anhydrous and CO2-bearing conditions. At 2 GPa glass in hydrous experiments is still Si-␣and alkali-rich whereas glass in the anhydrous and CO2-bearing experiments is only slightly enriched in SiO2 and alkalis compared with the original solvent. In the low pressure region, anhydrous and hydrous solvent melts yield glass of similar composition whereas the glass from CO2-bearing experiments is less SiO2 rich. The mechanism of dissolution of orthopyroxene is complex involving rapid incongruent breakdown of the orthopyroxene, combined with olivine saturation in the reaction zone forming up to 60% olivine. Inward diffusion of CaO causes clinopyroxene saturation and uphill diffusion of Na and K give the glasses their strongly alkaline characteristics. Addition of Na and K also causes minor SiO2 enrichment of the reaction glass by increasing the phase volume of olivine. Olivine and clinopyroxene are transiently stable phases within the reaction zone. Clinopyroxene is precipitated from the reaction zone melt near the orthopyroxene crystal and redissolved in the outer part of the reaction zone. Olivine defines the thickness of the reaction zone and is progressively dissolved in the solvent as the orthopyroxene continues to dissolve. Although there are compelling reasons for supporting the hypothesis that Si-rich alkaline melts are produced in the mantle by orthopyroxene – melt reaction in the mantle, there are several complications particularly regarding quenching in of disequilibrium reaction zone compositions and the mobility of highly polymerized melts in the upper mantle. It is considered likely that formation of veins and pools of Si-rich alkaline glass by orthopyroxene – melt reaction is a common process during the ascent of xenoliths. However, reaction in situ within the mantle will lead to equilibration and therefore secondary melts will be only moderately siliceous and alkali poor. Received: 24 August 1998 / Accepted: 2 December 1998  相似文献   

20.
All the indium-rich deposits with indium contents in ores more than 100×10- 6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn deposit in Yunnan, and the Meng'entaolegai Ag-Pb-Zn deposit in Inner Mongolia, the indium contents in ores range from 98×10-6 to 236×10-6 and show a good positive correlation with contents of zinc and tin, and their correlation coefficients are 0.8781 and 0.7430, respectively. The indium contents from such Sn-poor deposits as the Fozichong Pb-Zn deposit in Guangxi and the Huanren Pb-Zn deposit in Liaoning are generally lower than 10×10-6, i.e., whether tin is present or not in a deposit implies the enrichment extent of indium in ores. Whether the In enrichment itself in the ore -forming fluids or the ore-forming conditions has actually caused the enrichment/depletion of indium in the deposits? After studying the fluid inclusions in quartz crystallized at the main stage of mineralization of several In-rich and In-poor deposits in China, this paper analyzed the contents and studied the variation trend of In, Sn, Pb and Zn in the ore-forming fluids. The results show that the contents of lead and zinc in the ore-forming fluids of In-rich and -poor deposits are at the same level, and the lead contents range from 22×10-6 to 81×10-6 and zinc from 164×10-6 to 309×10-6, while the contents of indium and tin in the ore-forming fluids of In-rich deposits are far higher than those of In-poor deposits, with a difference of 1-2 orders of magnitude. Indium and tin contents in ore-forming fluid of In-rich deposits are 1.9×10-6-4.1×10-6 and 7×100-6-55×10-6, and there is a very good positive correlation between the two elements, with a correlation coefficient of 0.9552. Indium and tin contents in ore-forming fluid of In-poor deposits are 0.03×10-6-0.09×10-6 and 0.4×10-6--2.0×10-6, respectively, and there is no apparent correlation between them. This indicates, on one hand, that In-rich ore-forming fluids are the material basis for the formation of In-rich deposits, and, on the other hand, tin probably played a very important role in the transport and enrichment of indium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号