首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to identify the factors responsible for the differences in chlorophyll a concentration (Chl-a) observed between the California, Canary, Humboldt and Benguela upwelling areas. Monthly climatologic values of Chl-a obtained from satellite images, covering the years 1998–2004, revealed that this pigment was higher in the Benguela system than in the other areas. Upwelling intensity, as derived from offshore Ekman transport computations, was higher in the Benguela and Humboldt regions and, for the same upwelling intensity, Chl-a was higher in Benguela than in the other regions. Upwelling intensity appears to be able to drive Chl-a densities through nutrient supply, as nutrients are correlated to offshore Ekman transport. A linear regression model including the fraction of sea surface over the shelf in each 1° × 1° box, nitrate, silicate, turbulence and variability of offshore Ekman transport explained the 84.8% of the variance in Chl-a among the areas. Differences in offshore Ekman transport explained the lower Chl-a observed in Canary and California and the higher Chl-a observed in Benguela and Peru-Humboldt. A narrow continental shelf and low water column stability also contribute to reducing phytoplankton pigment biomass in the Canary and California areas. The higher Chl-a values observed in Benguela compared to Humboldt-Peru are due to a wider extension of the continental shelf in the Benguela region.  相似文献   

2.
Spatial and temporal distribution patterns of zooplankton are highly variable in the Northern Benguela Upwelling System. We studied the distribution of zooplankton (size class ≥ 0.33 mm) and used field data from four cruises that took place between March 2008 and February 2011, as well as simulation results of a regional ecosystem model. Remotely sensed sea surface temperatures (SST) and surface chlorophyll concentrations were analysed to investigate environmental influences on zooplankton biomass. The Intense Benguela Upwelling Index showed a distinct seasonal signal throughout the years and the highest upwelling peaks in August/September. Even though surface chlorophyll concentrations were very variable throughout the year, the highest concentrations were always detected in September, following the upwelling of nutrient‐rich water. In field catches, zooplankton biomass concentration in the upper 200 m was highest above the outer shelf and shelf‐break in December 2010 and February 2011, i.e. 6 months after the upwelling peaks. In contrast, zooplankton biomass simulated by the model in the surface water was highest in September. In March/April, biomass maxima were typically measured in the field at intermediate water depths, but the vertical distribution was also affected by extensive oxygen minimum zones. The ecosystem model reproduced this vertical pattern. Although general trends were similar, simulation data of zooplankton standing stocks overestimated the field data by a factor of 3. In upwelling systems, food webs are generally considered to be short and dominated by large cells. However, our field data indicate more small‐sized zooplankton organisms above the shelf than offshore.  相似文献   

3.
Depth-integrated chlorophyll a in the upper 30 m is used as an index of phytoplankton biomass. Mean concentrations of chlorophyll a (1971–1989) were calculated for half-degree rectangles of latitude and longitude within the 500 m isobath off the South African coast. These data were used to estimate median and mean concentrations and coefficients of variance for different seasons and geographical strata (i.e. inshore and offshore regions of the continental shelf along the West, Cape and South coasts). Offshore, longshore and seasonal differences in the distribution of phytoplankton biomass in the Benguela/Agulhas system were tested for statistical significance.  相似文献   

4.
Long time-series of sea surface temperature (SST) and pseudo wind stress (τ) in six areas in the South-East Atlantic are analysed as possible inputs into fisheries models. The areas encompass oceanic and coastal regimes. A clear seasonal signal is evident in all areas, with an amplitude in SST of 3–4°C in the upwelling areas and 5°C farther offshore and on the Agulhas Bank. Warming lags in the north and offshore by 1–2 months. Monthly variability is highest in the upwelling areas. An increasing trend in SST is suggested in all areas, the post-World War II era being about 1,0°C warmer than earlier periods. Some coherence occurs between areas at times, although at other times the anomalies are distinctly out of phase. There is a suggestion of an upward trend in the equatorward wind stress in some offshore areas after 1964, with a sharp change in 1975. Benguela Niños are evident in the environmental record and have a periodicity of around 10 years.  相似文献   

5.
The productivities of the Benguela, Peru and California Current upwelling systems and the trophodynamics of the associated hake stocks are compared. Within these large systems, upwelling rate, primary production and fish production are all positively correlated, as would be expected on trophodynamic grounds. Existing measurements suggest that the Benguela and the Peru Current systems are 2–4 times more productive than the California Current in terms of primary production and support 2–10 times more fish per square kilometre. The Benguela and Peru Current systems are 2–3 times more efficient in production of fish and harvestable yield to man as the California Current. The California Current appears to be less efficient primarily because a greater fraction of the annual primary production is transported offshore from the major upwelling sites by the prevailing winds and meandering structure of the currents. The strong seasonal variability in upwelling off California probably also results in poor trophodynamic coupling between the herbivores and phytoplankton. Consequently, less of the phytoplankton is consumed and, potentially, more can be exported out of the system. Hake (Merluccius spp.) are opportunistic, apex predators of euphausiids and pelagic and demersal fish in the three upwelling systems. The striking dominance of euphausiids in the diet of hake in the California Current probably reflects the lesser abundance of demersal fish in that highly advective region.  相似文献   

6.
This study attempts to explain the variability in recruitment of sardine in the northern Benguela and to develop potential models by including environmental information to predict recruitment. Two different recruitment and spawner number datasets were available: a VPA-developed dataset, for the period 1952-1987, and data from a simple age-structured model for 1992-2007. In all, four environmental indices were used: the degree of the intrusion of the warm Angola Current into northern Namibia, termed the Angola-Benguela front index; the extent of the upwelling area off central Namibia; average sea surface temperature (SST) over the northern and central Namibian shelf; and wind stress anomalies at Luderitz as an indicator of upwelling strength. Contrary to general belief, it was found that extremely high recruitment can happen at low spawner levels. This occurred in years in which a large upwelling area existed in association with the minimum southward intrusion of the Angola Current. These effects override the normal negative linear relationships with SST and the positive linear relationship with wind. However, when the area of upwelling is average or small, the effects of spawner biomass, SST and wind become important factors in the variability of recruitment. To estimate exceptional recruitment, the upwelling and front indices were included in the model. To measure medium and weak recruitment, spawner numbers and the SST and wind anomaly formed part of the model. These models can be used simultaneously to predict recruitment before annual acoustic surveys take place and thus aid management decisions.  相似文献   

7.
Thirteen years (1998–2010) of satellite-measured chlorophyll a are used to establish spatial patterns in climatological phytoplankton biomass seasonality across the California Current System (CCS) and its interannual variability. Multivariate clustering based on the shape of the local climatological seasonal cycle divides the study area into four groups: two with spring-summer maxima representing the northern and southern coastal upwelling zones, one with a summer minimum offshore in mid-latitudes and a fourth with very weak seasonality in between. Multivariate clustering on the seasonal cycles from all 13 years produces the same four seasonal cycle types and provides a view of the interannual variability in seasonal biogeography. Over the study period these seasonal cycles generally appear in similar locations as the climatological clusters. However, considerable interannual variability in the geography of the seasonal cycles is evident across the CCS, the most spatially extensive of which are associated with the 1997–1999 El Niño-Southern Oscillation (ENSO) signal and the 2005 delayed spring transition off the Oregon and northern and central California coasts. We quantify linear trends over the study period in the seasonal timing of the two seasonal cycles that represent the biologically productive coastal upwelling zones using four different metrics of phenology. In the northern upwelling region, the date of the spring maximum is delaying (1.34 days yr−1) and the central tendency of the summer elevated chlorophyll period is advancing (0.63 days yr−1). In the southern coastal upwelling region, both the initiation and cessation of the spring maximum are delaying (1.78 days yr−1 and 2.44 days yr−1, respectively) and the peak is increasing in duration over the study period. Connections between observed interannual shifts in phytoplankton seasonality and physical forcing, expressed as either basin-scale climate signals or local forcing, show phytoplankton seasonality in the CCS to be influenced by changes in the seasonality of the wind mixing power offshore, coastal upwelling in the near-shore regions and basin-scale signals such as ENSO across the study area.  相似文献   

8.
Production regimes in four Eastern Boundary Current systems   总被引:2,自引:0,他引:2  
High productivity (maxima 3 gCm−2 day−1) of the Eastern Boundary Currents (EBCs), i.e. the California, Peru-Humboldt, Canary and Benguela Currents, is driven by a combination of local forcing and large-scale circulation. The characteristics of the deep water brought to the surface by upwelling favorable winds depend on the large-scale circulation patterns. Here we use a new hydrographic and nutrient climatology together with satellite measurements of the wind vector, sea-surface temperature (SST), chlorophyll concentration, and primary production modeled from ocean color to quantify the meridional and seasonal patterns of upwelling dynamics and biological response. The unprecedented combination of data sets allows us to describe objectively the variability for small regions within each current and to characterize the governing factors for biological production. The temporal and spatial environmental variability was due in most regions to large-scale circulation, alone or in combination with offshore transport (local forcing). The observed meridional and seasonal patterns of biomass and primary production were most highly correlated to components representing large-scale circulation. The biomass sustained by a given nutrient concentration in the Atlantic EBCs was twice as large as that of the Pacific EBCs. This apparent greater efficiency may be due to availability of iron, physical retention, or differences in planktonic community structure.  相似文献   

9.
An investigation of surface phytoplankton communities was undertaken on the shelf of the northern Benguela upwelling ecosystem during austral autumn (May) and spring (September), along latitudinal transects at 20° S and 23° S, from 2 to 70 nautical miles offshore, as well as on a zigzag grid located between these transects. Microscopic identification of the phytoplankton and CHEMTAX analysis of pigment biomarkers were used to characterise the community composition. During May 2014, warmer, more-saline water with a shallower upper mixed layer corresponding to periods of less-intense offshore Ekman transport was encountered on the shelf. Satellite imagery indicated high phytoplankton biomass extending for a considerable distance from the coast, and CHEMTAX indicated diatoms as dominant at most of the stations (52–92%), although dinoflagellates were dominant at some inshore localities (57–74%). Species of Chaetoceros, Bacteriastrum and Cylindrotheca were the most abundant, with abundance of the Pseudo-nitzschiaseriata-group’ being particularly high at a number of stations. In September 2014, more-intense wind-forcing resulted in a deeper upper mixed layer and stronger upwelling of colder, less-saline water. Elevated phytoplankton biomass was confined close to the coast, where diatoms accounted for most of the population (54–87%), whereas small flagellates, such as prasinophytes, haptophytes and cryptophytes, as well as the cyanobacterium Synechococcus, dominated the communities (58–90%) farther from the coast. It is hypothesised that stronger upwelling and deeper vertical mixing in September of that year were not conducive for widespread diatom growth, and that small flagellates populated the water column by being entrained from offshore onto the shelf in the upwelled water that moved in towards the coast.  相似文献   

10.
I reviewed my research on analysis of temporal and spatial variability of phytoplankton by physical-biological models. This paper was prepared for a lecture of the member awarded the Okada Prize for 1991 from the Oceanographical Society of Japan.Temporal change of phytoplankton in a local upwelling was studied by simulated upwelling experiments conducted with natural phytoplankton communities under natural surface light conditions. Results of the culture experiments was explained by a simple model. This model allows to predict the chlorophyll and nutrient concentration changes in a given upwelled water mass.Above model was verified by a local upwelling observed off Izu, Japan, on May, 1982. Phytoplankton growth and nutrient decrease in surface water of the local upwelling were observed within two days followed by decrease of phytoplankton concentration under depleted nutrient environment. The phytoplankton growth and nutrient decrease could explained by the model with phytoplankton removal rate of about half of the growth rate. Centric diatom was the dominant phytoplankton group and pennate diatom showed less abundance in the upwelled water. Pennate diatom showed fast growth rate when nutrient was abundant and fast decreasing rate after nutrient depleted. On the other hand, flagellate and monads showed relatively slow change of biomass under the change of nutrient concentrations. Furthermore, resting spore formation of centric diatom,Leptocylindrus danicus, was observed in a response to nutrient depletion.Temporal and spatial variability of phytoplankton in the southeastern U.S. continental shelf ecosystem was studied by physical-biological models. First, differences of the biological responses to frontal eddy upwelling during spring and to intrusion during summer was considered by Lagrangian particle tracing experiments with optimally-interpolated flow fields. In spring, particles showed residence time of a few days; however, particles in summer intrusion stayed on the shelf nearly 30 days. It was concluded that difference of particle residence time of upwelled water make the difference of plankton communities. Similar flow fields and particle tracing experiments were used to trace the features in chlorophyll distributions during spring of 1980 derived by Coastal Zone Color Scanner (CZCS). Phytoplankton patchness were created and deformed by frontal eddy events. Eularian physical-biological model was constructed to understand the CZCS-chlorophyll distributions. Statistical comparisons with series of numerical experiments indicate that horizontal advection is an important process for the chlorophyll distributions and that upwelling and associated phytoplankton growth are responsible for the across-shelf gradients and maintenance of concentrations. Furthermore, the CZCS data were assimilated to the model to improve the phytoplankton concentrations, and phytoplankton carbon flux across shelf was estimated. Processes causing the time changes of chlorophyll concentrations were estimated with the model and satellite data further indicated that the both physical and biological forcing is important for the time chages. Several other studies conducted presently were mentioned.  相似文献   

11.
The elevated levels of primary productivity associated with eastern boundary currents are driven by nutrient- rich waters upwelled from depth, such that these regions are typically characterised by high rates of nitrate-fuelled phytoplankton growth. Production studies from the southern Benguela upwelling system (SBUS) tend to be biased towards the summer upwelling season, yet winter data are required to compute annual budgets and understand seasonal variability. Net primary production (NPP) and nitrate and ammonium uptake were measured concurrently at six stations in the SBUS in early winter. While euphotic zone NPP was highest at the stations nearest to the coast and declined with distance from the shore, a greater proportion was potentially exportable from open-ocean surface waters, as indicated by the higher specific nitrate uptake rates and f-ratios (ratio of nitrate uptake to total nitrogen consumption) at the stations located off the continental shelf. Near the coast, phytoplankton growth was predominantly supported by ammonium despite the high ambient nitrate concentrations. Along with ammonium concentrations as high as 3.6 µmol l–1, this strongly suggests that nitrate uptake in the inshore SBUS, and by extension carbon drawdown, is inhibited by ammonium, at least in winter, although this has also been hypothesised for the summer.  相似文献   

12.
We analysed mixed-layer seasonal and interannual variability in phytoplankton biomass and macronutrient (NO3 and Si(OH)4) concentrations from three decades of observations, and nitrogen uptake rates from the 1990s along Line P in the NE subarctic Pacific. Chlorophyll a concentrations near 0.35 mg m−3 were observed year-round along Line P except at the nearshore station (P4) where chlorophyll a concentrations in spring were on average 2.4 times the winter values. In contrast, the temporal variability in carbon-to-chlorophyll ratios at the two main end members of Line P (P4 and OSP) was high. Large seasonal and interannual variability in NO3 and Si(OH)4 concentration were observed along Line P. Highest upper mixed-layer (top 15 m) nutrient concentrations occurred on the continental shelf in late summer and early fall due to seasonal coastal upwelling. Beyond the shelf, maximum nutrient concentrations increased gradually offshore, and were highest in late winter and early spring due to mixing by winter storms. Interannual variations in upper mixed-layer nutrient concentrations beyond the shelf (>128°W) were correlated with E-W winds and the PDO since 1988 but were not correlated with either climate index between 1973 and 1981. Despite differences in nutrient concentration, nutrient utilization (ΔNO3 and ΔSi(OH)4) during the growing season were about 7.5 μM at all offshore stations. Variations in ΔNO3 were correlated with those of ΔSi(OH)4. The annual cycle of absolute NO3 uptake (ρNO3) and NH4 uptake (ρNH4) rates by phytoplankton in the upper mixed-layer showed a weak increasing trend from winter to spring/summer for the period 1992-1997. Rates were more variable at the nearshore station (P4). Rates of ρNO3 were low along the entire line despite abundant NO3 and low iron (Fe), at the offshore portion of Line P and sufficient Fe at the nearshore station (P4). As a result, new production contributed on average to only 32 ± 15% of the total nitrogen (N) uptake along Line P. NO3 utilization in the NE subarctic Pacific is probably controlled by a combination of environmental variables, including Fe, light and ambient NH4 levels. Elevated ambient NH4 concentrations seem to decrease the rates of new production (and f-ratios) in surface waters of the oceanic subarctic NE Pacific. Contrary to expectation, phytoplankton biomass, nutrient utilization (ΔNO3 and ΔSi(OH)4), and nitrogen uptake (ρNO3 + ρNH4) varied relatively little along Line P, despite significant differences in the factors controlling phytoplankton composition assemblages and production. Future studies would benefit from including other variables, especially light limitation, to improve our understanding of the seasonal and interannual variability in phytoplankton biomass and nutrients in this region.  相似文献   

13.
陈莹  赵辉 《海洋学研究》2021,39(3):84-94
本文使用2003年1月—2019年12月MODIS遥感数据,结合海表温度、风速分析南海中西部叶绿素质量浓度分布特征和影响因素。结果显示南海中西部叶绿素质量浓度分布存在时空变化。EOF分解表明,EOF1可能反映台风等极端天气对叶绿素的影响;而EOF2 和EOF3均反映了夏季沿岸上升流对叶绿素分布的影响。相关分析表明南海中西部叶绿素质量浓度与海面风场呈正相关(r=0.87,p<0.01),与海表温度呈负相关(r=-0.59,p<0.05)。夏季在西南季风影响下越南东南沿海形成上升流,导致该区浮游植物旺发、叶绿素质量浓度升高;冬季受强东北季风影响,研究区海洋上层混合作用强烈,营养盐供应增加,促进了浮游植物生长,叶绿素质量浓度高于其他季节。  相似文献   

14.
Primary productivity (PP) and phytoplankton structure play an important role in regulating oceanic carbon cycle. The unique seasonal circulation and upwelling pattern of the South China Sea (SCS) provide an ideal natural laboratory to study the response of nutrients and phytoplankton dynamics to climate variation. In this study, we used a three-dimensional (3D) physical–biogeochemical coupled model to simulate nutrients, phytoplankton biomass, PP, and functional groups in the SCS from 1958 to 2009. The modeled results showed that the annual mean carbon composition of small phytoplankton, diatoms, and coccolithophores was 33.7, 52.7, and 13.6 %, respectively. Diatoms showed a higher seasonal variability than small phytoplankton and coccolithophores. Diatoms were abundant during winter in most areas of the SCS except for the offshore of southeastern Vietnam, where diatom blooms occurred in both summer and winter. Higher values of small phytoplankton and coccolithophores occurred mostly in summer. Our modeled results indicated that the seasonal variability of PP was driven by the East Asian Monsoon. The northeast winter monsoon results in more nutrients in the offshore area of the northwestern Luzon Island and the Sunda Shelf, while the southwest summer monsoon drives coastal upwelling to bring sufficient nutrients to the offshore area of southeastern Vietnam. The modeled PP was correlated with El Niño/Southern Oscillation (ENSO) at the interannual scale. The positive phase of ENSO (El Niño conditions) corresponded to lower PP and the negative phase of ENSO (La Niña conditions) corresponded to higher PP.  相似文献   

15.
Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a(Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates,prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids(PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.  相似文献   

16.
High primary productivity on the Pacific coast of the Baja California Peninsula is usually related to coastal upwelling activity that injects nutrients into the euphotic zone in response to prevailing longshore winds (from the northwest to north). The upwelling process has maximum intensity from April to June, with the coastal upwelling index varying from 50 to 300 m3/s per 100 m of coastline. Along the entire coast of the peninsula, the upwelling intensity changes in accordance with local wind conditions and bottom topography. Spatial variability can also be modulated by the influence of mesoscale meanders of the California Current. We have identified the seasonal and synoptic variability of upwelling signatures on the Baja California shelf, using averaged monthly and weekly sea surface temperature (SST) distributions obtained from remote sensing imagery from the Advanced Very High Resolution Radiometer in the period from 1996 to 2001. Analysis of SST distribution and direct experimental data on temperature and nutrient concentration shows that the areas with the coldest SST anomalies were closely related to the bottom slope, shelf width, and coastline orientation relating to wind direction. We also assume that the nutrient transport into the coastal lagoons may be forced by the coupling of coastal upwelling and tidal pumping of surface waters into the lagoon system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Pigment indices were used to investigate the distribution and composition of phytoplankton in the northern Benguela during the austral spring of 2000, with sampling being conducted on five transect lines between 19°S and 25°S and at other inshore stations on the shelf. Total chlorophyll a concentrations (TChla) at the surface ranged from 18.4mg m?3 at shallow inshore stations to 0.58mg m?3 at offshore localities in deeper water. Phytoplankton communities in the inshore environment were characterised by elevated biomass levels and the dominance of diatoms (high FucDP indices). These diatom populations were associated with cool, higher density, nutrient-rich waters near the coast. Phytoplankton biomass declined with increasing distance offshore and the communities changed to a mixed population where small flagellates were generally dominant (high FlagDP indices). These flagellate communities were associated with warmer, lower density waters. Whereas dinoflagellates (PerDP Index) and prokaryotes (ZeaDP Index) were observed throughout the region, their contribution to the communities was of secondary importance.  相似文献   

18.
Pigment patterns and associated absorption properties of phytoplankton were investigated in the euphotic zone along two meridional transects in the Atlantic Ocean, between the UK and the Falkland Islands, and between South Africa and the UK. Total chlorophyll a (TChla=MVChla+DVChla+chlorophyllide a) concentrations and the biomarker pigments for diatoms (fucoxanthin), nanoflagellates and cyanobacteria (zeaxanthin) appeared to have similar distribution patterns in the spring and in the autumn in the temperate NE Atlantic and the northern oligotrophic gyre. Divinyl chlorophyll a levels (prochlorophytes) were greater in spring at the deep chlorophyll maximum in the oligotrophic gyre, however. Marked seasonal differences were observed in the NW African upwelling region. TChla concentrations were twice as high in the upper mixed layer in the spring, with the community dominated by diatoms and prymnesiophytes (19′-hexanoyloxyfucoxanthin). A layered structure was prevalent in the autumn where cyanobacteria, diatoms and prymnesiophytes were located in the upper water column and diatoms and mixed nanoflagellates at the sub-surface maximum. In the South Atlantic, the Benguela upwelling ecosystem and the Brazil-Falklands Current Confluence Zone (BFCCZ) were the most productive regions with the TChla levels being twice as high in the Benguela. Diatoms dominated the Benguela system, while nanoflagellates were the most ubiquitous group in the BFCCZ. Pigment concentrations were greater along the eastern boundary of the southern oligotrophic gyre and distributed at shallower depths. Deep chlorophyll maxima were a feature of the western boundary oligotrophic waters, and cyanobacteria tended to dominate the upper water column along both transects with a mixed group of nanoflagellates at the chlorophyll maximum.Absorption coefficients were estimated from spectra reconstructed from pigment data. Although absorption was greater in the productive areas, the TChla-specific coefficients were higher in oligotrophic regions. In communities that were dominated by diatoms or nanoflagellates, pigment absorption was generally uniform with depth and attenuating irradiance, with TChla being the major absorbing pigment at 440 nm and photosynthetic carotenoids (PSC) at 490 nm. Absorption by chlorophyll c and photoprotective carotenoids (PPC) was much lower. Populations where cyanobacteria were prevalent were characterized by high PPC absorption, particularly at 490 nm, throughout most of the euphotic zone. The data suggested that the effect of pigments on the variability of phytoplankton absorption was due primarily to the variations in absorption by PPC.  相似文献   

19.
In the coastal waters off northern California, seasonal wind-driven upwelling supplies abundant nutrients to be processed by phytoplankton productivity. As part of the Coastal Ocean Processes: Wind Events and Shelf Transport (CoOP WEST) study, nutrients, CO2, size-fractionated chlorophyll, and phytoplankton community structure were measured in the upwelling region off Bodega Bay, CA, during May–June 2000, 2001 and 2002. The ability of this ecosystem to assimilate nitrate (NO3) and silicic acid/silicate (Si(OH)4) and accumulate particulate material (i.e. phytoplankton) was realized in all 3 years, following short events of upwelling-favorable winds, followed by periods of relaxed winds. This was observed as phytoplankton blooms, dominated by chlorophyll in cells greater than 5 μm in diameter, that reduced the ambient nutrients to zero. These communities were located over the near-shore shelf (<100 m depth) and were dominated by diatoms. An optimal window of 3–7 days of relaxed winds, following an upwelling pulse, was required for chlorophyll accumulation. The large-celled phytoplankton that result are likely important players in coastal new production and carbon cycling.  相似文献   

20.
Satellite derived sea surface temperature (SST) and chlorophyll data are used to characterise the period of upwelling during a cruise on which two Lagrangian drift experiments were conducted off the Iberian Atlantic coast in August 1998. During the cruise there was a prolonged period of equator-ward winds which favour upwelling; three distinct maxima were observed in the meteorological data interspersed with periods of relaxation. The SST and chlorophyll imagery show upwelling to be active with distinct offshore filaments that are cooler and of higher chlorophyll concentration than the surrounding oceanic water; these filaments represent an important cross-shelf transport mechanism. A front detection methodology has been applied to satellite images and suggests that these filaments are distinct, long-lived features, characterised by enhanced primary production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号