首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Typhoon-generated waves are simulated with two numerical wave models, the SWAN model for the coastal and Yangtze Estuary domain, nested within the WAVEWATCHIII (WW3) for the basin-scale East China Sea domain. Typhoon No. 8114 is chosen because it was very strong, and generated high waves in the Estuary. WW3 was implemented for the East China Sea coarse-resolution computational domain, to simulate the waves over a large spatial scale and provide boundary conditions for SWAN model simulations, implemented on a fine-resolution nested domain for the Yangtze Estuary area. The Takahashi wind model is applied to the simulation of the East China Sea scale (3-hourly) and Yangtze Estuary scale (1-hourly) winds. Simulations of significant wave heights in the East China Sea show that the highest waves are on the right side of the storm track, and maxima tend to occur at the eastern deep-water open boundary of the Yangtze Estuary. In the Yangtze Estuary, incoming swell is dominant over locally generated waves before the typhoon approaches the Estuary. As the typhoon approaches the Estuary, wind waves and swell coexist, and the wave direction is mainly influenced by the swell direction and the complex topography.  相似文献   

2.
获取高分辨率的风场数据和气压场数据是精确模拟台风浪的基础,采用经验公式构建台风风场和气压场对海浪模式进行驱动,无法反映台风影响下海气动力过程,难以提供高精度的风场、气压场数据。本文基于中尺度大气模式WRF(Weather Research and Forecasting model)和第三代海浪模式SWAN(Simulating WAves Nearshore model),构建了南中国海地区大气—海浪实时双向耦合模式,针对超强台风"威马逊"进行数值模拟。将数值模拟结果与现场观测结果及卫星高度计观测结果进行对比验证,验证结果表明,本文建立的WRF-SWAN耦合模式在对台风"威马逊"影响下的南中国海台风浪的模拟中展现出较高的模拟精度,揭示了台风风场分布和台风浪分布在空间上的"右偏性"不对称分布特征及其形成机制。基于WRF和SWAN建立的大气-海浪实时双向耦合模式能够准确模拟台风动力过程以及台风浪的时空分布特征,可以推广用于南中国海地区台风浪的模拟分析。  相似文献   

3.
The influences of the three types of reanalysis wind fields on the simulation of three typhoon waves occurred in 2015 in offshore China were numerically investigated. The typhoon wave model was based on the simulating waves nearshore model (SWAN), in which the wind fields for driving waves were derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis-Interim (ERA-interim), the National Centers for Environmental Prediction climate forecast system version 2 (CFSv2) and cross-calibrated multi-platform (CCMP) datasets. Firstly, the typhoon waves generated during the occurrence of typhoons Chan-hom (1509), Linfa (1510) and Nangka (1511) in 2015 were simulated by using the wave model driven by ERA-interim, CFSv2 and CCMP datasets. The numerical results were validated using buoy data and satellite observation data, and the simulation results under the three types of wind fields were in good agreement with the observed data. The numerical results showed that the CCMP wind data was the best in simulating waves overall, and the wind speeds pertaining to ERA-Interim and CCMP were notably smaller than those observed near the typhoon centre. To correct the accuracy of the wind fields, the Holland theoretical wind model was used to revise and optimize the wind speed pertaining to the CCMP near the typhoon centre. The results indicated that the CCMP wind-driven SWAN model could appropriately simulate the typhoon waves generated by three typhoons in offshore China, and the use of the CCMP/Holland blended wind field could effectively improve the accuracy of typhoon wave simulations.  相似文献   

4.
Accurately estimating the mean and extreme wave statistics and better understanding their directional and seasonal variations are of great importance in the planning and designing of ocean and coastal engineering works. Due to the lack of long-term wave measurement data, the analysis of extreme waves is often based on the numerical wave hind-casting results. In this study, the wave climate in the East China Seas (including the Bohai Sea, the Yellow Sea and the East China Sea) for the past 35 years (1979–2013) is hind-casted using a third generation wave model – WAMC4 (Cycle 4 version of WAM model). Two sets of reanalysis wind data from NCEP (National Centers for Environmental Prediction, USA) and ECMWF (European Centre for Medium-range Weather Forecasts) are used to drive the wave model to generate the long-term wave climate. The hind-casted waves are then analysed to study the mean and extreme wave statistics in the study area. The results show that the mean wave heights decrease from south to north and from sea to land in general. The extreme wave heights with return periods of 50 and 100 years in the summer and autumn seasons are significantly higher than those in the other two seasons, mainly due to the effect of typhoon events. The mean wave heights in the winter season have the highest values, mainly due to the effect of winter monsoon winds. The comparison of extreme wave statistics from both wind fields with the field measurements at several nearshore wave observation stations shows that the extreme waves generated by the ECMWF winds are better than those generated by the NCEP winds. The comparison also shows the extreme waves in deep waters are better reproduced than those in shallow waters, which is partly attributed to the limitations of the wave model used. The results presented in this paper provide useful insight into the wave climate in the area of the East China Seas, as well as the effect of wind data resolution on the simulation of long-term waves.  相似文献   

5.
邓丹  周泉  马磊  李锐祥 《海洋与湖沼》2023,54(6):1529-1536
南海北部海域夏季台风活动频繁,对海上生产活动和人民生命财产安全造成极大威胁,由于台风路径的不确定性,其中心附近区域的风浪观测资料十分稀少。中国气象局(China Meteorological Administration, CMA)热带气旋最佳路径数据显示2017年10月强台风“卡努”中心经过南海北部陆坡的SF301浮标,该浮标完整记录了台风过境的风浪数据。利用浮标观测资料,分析了强台风“卡努”过境期间的风和海浪特征。观测结果表明,“卡努”经过浮标时,中心气压为959.9 hPa,风速随时间呈双峰分布,前、后眼壁区的10 min平均风速分别为30.2 m/s和24.9 m/s, 1 s极大风速分别为44.2和38.6 m/s。海浪以风浪为主,观测有效波高和最大波高最大值分别为10.8和14.3 m,滞后最大风速30 min,波向和风向变化趋势一致。台风过境期间,有效波高与海面10 m风速接近线性关系,非台风期间二者呈二次多项式关系。海浪无因次波高和周期呈幂指数关系,无论是台风期间还是非台风期间二者关系十分接近Toba提出的3/2指数律。  相似文献   

6.
为了分析台风影响下浙江沿海风和浪的演变特点,利用浙江省海洋浮标站监测数据和欧洲中期天气预报中心第五代全球气候大气再分析数据(European Centre for Medium-Range Weather Forecasts Reanalysis v5,ERA5),选取2010年以来严重影响浙江的7次台风个例,对台风作用下浙江沿海海面风和浪的演变特点进行分析。结果表明:在台风影响过程中,海浪波型多数呈现混合浪-风浪-混合浪的演变规律;涌浪波型的出现与台风强度及其与浮标站的距离和方位有关,也与海洋潮汐现象紧密相关。台风影响期间,浙江沿海浪高的变化受风速和风向共同作用影响。在风向不变的情况下,持续风速增大对浪高的增大有明显作用;风向的变化也会对浪高变化产生影响,向岸风和离岸风的转变会造成浪高出现剧烈变化。ERA5 再分析资料有效波高在台风浪较大时会呈现偏小的趋势,分析订正后的ERA5 有效波高发现,台风浪有效波高大值区与台风中心位置相关。研究结果可为严重影响浙江沿海的台风浪预报服务提供参考。  相似文献   

7.
A coupled wave–tide–surge model has been established in this study in order to investigate the effect of tides, storm surges, and wind waves interactions during a winter monsoon on November 1983 in the Yellow Sea. The coupled model is based on the synchronous dynamic coupling of a third-generation wave model, WAM-Cycle 4, and the two-dimensional tide–surge model. The surface stress generated by interactions between wind and waves is calculated using the WAM-Cycle 4 directly based on an analytical approximation of the results obtained from the quasi-linear theory of wave generation. The changes of bottom friction factor generated by waves and current interactions are calculated by using simplified bottom boundary layer model. The model simulations showed that bottom velocity and effective bottom drag coefficient induced by combination of wave and current were increased in shallow waters of up to 50 m in the Yellow Sea during the wintertime strong storm conditions.  相似文献   

8.
台风引起的海浪灾害对我国黄、渤海沿岸影响巨大,严重威胁相关区域人民群众生命财产安全。本文主要利用ERA5(the fifth generation European Center for Medium-Range Weather forecasts atmospheric reanalysis of the global climate)风场研究了两类不同移动路径下的台风(1909号台风“利奇马”和1109号台风“梅花”)在黄、渤海区域的海浪场的时空分布特征及风-浪成长关系。结果表明:两个台风引起的海浪的有效波高空间分布明显不同,波高的分布和风速对应,而海浪周期与风速、波高的分布无明显相关性,波向较风向偏于台风移动方向且两者偏差较大;两个台风进入黄海之前就形成一个从黄海向渤海的“涌浪舌”。海浪成分方面,台风“利奇马”引起的沿海区大浪主要是风浪,而台风“梅花”移动路径的右侧以风浪为主,左侧则主要是涌浪;通过建立无因次波高与无因次周期的幂律关系、以及有效波高关于风速的二次多项式变化关系,研究了风-浪成长特性,结果发现,台风浪的成长特性与台风过程关系不明显,但与所处水域的水深和海底地形地貌有关,表现为两个台风在黄海区域的台风浪成长较渤海区域更为充分。  相似文献   

9.
Wind-generated waves in Hurricane Juan   总被引:3,自引:0,他引:3  
We present numerical simulations of the ocean surface waves generated by hurricane Juan in 2003 as it reached its mature stage (travelling from deep waters off Bermuda to Nova Scotia and making landfall near Halifax) using SWAN (v.40.31) nested within WAVEWATCH-III (v.2.22; denoted WW3) wave models, implemented on multiple-nested domains. As for all storm-wave simulations, spectral wave development is highly dependent on accurate simulations of storm winds during its life cycle. Due to Juan’s rapid translation speed (accelerating from 2.28 m s−1 on 27 September, 1200 UTC to 20 m s−1 on 29 September, 1200 UTC), an interpolation method is developed to blend observed hurricane winds with numerical weather prediction (NWP) model winds accurately. Wave model results are compared to in situ surface buoys and ADCP wave data along Juan’s track. At landfall, Juan’s maximum waves are mainly swell-dominated and peak waves lag the occurrence of the maximum winds. We explore the influence of surface waves on the wind and show that the accuracy of the wave simulation is enhanced by introducing swell and Stokes drift feedback mechanisms to modify the winds, and by limiting the peak drag coefficient under high wind conditions, in accordance with recent theoretical and experimental results.  相似文献   

10.
本文基于FVCOM-SWAVE耦合模型,以双台风"苏拉"和"达维"的台风过程为例,研究了台风过程中海浪和海温的变化,通过与高度计和Argo资料的对比,发现耦合模型能较准确的模拟出有效波高和海表面温度。由于双台风风场相互作用,风场结构和最大风速位置发生改变,影响着有效波高的分布,台风"苏拉"产生的最大有效波高位于台风后侧。海表面温度的降低与风场、浪场分布密切相关,强风强浪处的降温现象更明显,"苏拉"产生的降温区域位于路径附近,"达维"产生的降温区域位于路径右侧。台风对海表面温度的降低与初始的混合层厚度、温跃层强度存在相关性,具体表现为初始的混合层越薄、温跃层强度越大,降温越明显。  相似文献   

11.
The surface waves in the Baltic Sea are hindcast with the spectral wave model HYPAS during a 12-month period. The model results show a strong temporal and spatial variation in the wave field due to the physical dimensions of the different basins and the predominant wind field. The highest waves in the area are found in the outer part of Skagerrak, as well as in the central and southern parts of the Baltic Proper. To get significant waves above 6 m high, strong winds (15–20 m/s) must have been blowing for 6 to 24 h from a favourable direction over a deep area.  相似文献   

12.
本论文通过对南海北部三次台风过境期间基于浮标观测的海浪谱进行分析,发现虽然大部分成熟的台风海浪谱为单峰结构,但实际上在台风海浪的成长和衰减阶段,双峰谱占据了很大的比例。双峰谱的形成主要是由于风浪和涌浪的叠加以及不同波分量之间的非线性相互作用,我们可以通过能量密度的成长率对谱型变化进行高效的预报。此外,台风海浪的主要波向依赖于台风中心相对观测点的位置,而波向的分散情况在相距台风中心较远的区域无明显规律。本文提出了一个新的六参数波浪谱型拟合双峰谱,其拟合效果相较于前人的谱型更好。通过验证,形状参数和谱宽度之间的理论关系依然适用于单个谱峰。通过分析谱参量的变化特征,证明了谱参量不仅与台风强度和台风路径相关,还存在很强的交互相关。最后通过拟合海浪谱数据,本文得到了台风影响下海浪有效波高和有效周期之间的成长关系,这对海洋工程实际应用具有重要意义。  相似文献   

13.
Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyō, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions.  相似文献   

14.
This paper evaluates the impact of using different wind field products on the performance of the third generation wave model SWAN in the Black Sea and its capability for predicting both normal and extreme wave conditions during 1996. Wind data were obtained from NCEP CFSR, NASA MERRA, JRA-25, ECMWF Operational, ECMWF ERA40, and ECMWF ERA-Interim. Wave data were obtained in 1996 at three locations in the Black Sea within the NATO TU-WAVES project. The quality of wind fields was assessed by comparing them with satellite data. These wind data were used as forcing fields for the generation of wind waves. Time series of predicted significant wave height (Hmo), mean wave period (Tm02), and mean wave direction (DIR) were compared with observations at three offshore buoys in the Black Sea and its performance was quantified in terms of statistical parameters. In addition, wave model performance in terms of significant wave height was also assessed by comparing them against satellite data.The main scope of this work is the impact of the different available wind field products on the wave hindcast performance. In addition, the sensitivity of wave model forecasts due to variations in spatial and temporal resolutions of the wind field products was investigated. Finally, the impact of using various wind field products on predicting extreme wave events was analyzed by focussing on storm peaks and on an individual storm event in October 1996. The numerical results revealed that the CFSR winds are more suitable in comparison with the others for modelling both normal and extreme events in the Black Sea. The results also show that wave model output is critically sensitive to the choice of the wind field product, such that the quality of the wind fields is reflected in the quality of the wave predictions. A finer wind spatial resolution leads to an improvement of the wave model predictions, while a finer temporal resolution in the wind fields generally does not significantly improve agreement between observed and simulated wave data.  相似文献   

15.
利用WAVEWATCHⅢ海浪模式模拟的1993-2011年中国东部海域19 a冬季逐日海浪场资料以及同期CCMP逐日风场资料,采用奇异值分解(SVD)的方法分析了冬季中国东部海域海浪场与提前0~5 d的东亚大陆地面风场的关联特征。结果发现:海浪场与提前1 d的地面风场的关联更有意义;SVD第一模态和第二模态分别反映了贝加尔湖以东南下的反气旋式偏北扰动大风(或气旋式偏南扰动大风)和中国东部平原入海的气旋式扰动风场(或反气旋式扰动风场)对中国东部海域海浪的扰动影响。此外,SVD分析还揭示了冬季影响中国东部海域海浪的大风关键区和移动路径;随着时间的推移,大风关键区从贝加尔湖以东逐步由蒙古南下影响中国东北和华北地区,最后到达中国东部海域。  相似文献   

16.
The oceanic response to a typhoon in the East China Sea (ECS) was examined using thermal and current structures obtained from ocean surface drifters and a bottom-moored current profiler installed on the right side of the typhoon’s track. Typhoon Nari (2007) had strong winds as it passed the central region of the ECS. The thermal structure in the ECS responded to Typhoon Nari (2007) very quickly: the seasonal thermocline abruptly collapsed and the sea surface temperature dropped immediately by about 4°C after the typhoon passed. The strong vertical mixing and surface cooling caused by the typhoon resulted in a change in the thermal structure. Strong near-inertial oscillation occurred immediately after the typhoon passed and lasted for at least 4–5 days, during which a strong vertical current existed in the lower layer. Characteristics of the near-inertial internal oscillation were observed in the middle layer. The clockwise component of the inertial frequency was enhanced in the surface layer and at 63 m depth after the typhoon passed, with these layers almost perfectly out of phase. The vertical shear current was intensified by the interaction of the wind-driven current in the upper layer and the background semi-diurnal tidal current during the arrival of the typhoon, and also by the near-inertial internal oscillation after the typhoon passage. The strong near-inertial internal oscillation persisted without significant interfacial structure after the mixing of the thermocline, which could enhance the vertical mixing over several days.  相似文献   

17.
通过在海口湾北部海域布置波浪观测站,对采集到的实测波浪资料进行统计和波谱分析,研究了琼州海峡波浪季节性变化特征。观测期间最大波高为5.6 m,发生在台风"莎莉嘉"经过期间。无台风影响的月份最大波高为3.0 m。年平均十分之一大波波高、年平均有效波高、年平均波高分别为0.5 m、0.4 m、0.3 m,该海域波高总体不大。波周期范围主要在2~7 s区间。研究结果表明:1)观测海区各月基本都受到东北风影响并存在东北向的波浪; 2)发现海区波浪类型主要是风浪为主的混合浪; 3)发现观测海区一直受到南海传入的长周期波影响; 4)海区风向与浪向的一致性在东北季风影响时段明显强于西南季风影响时段,风速与波高的相关性在东北季风影响时段明显强于西南季风影响时段,该现象在台风月份表现得尤其明显。  相似文献   

18.
台风往往会带来强风、大浪、风暴潮。强潮大浪给长江口深水航道整治工程的维护带来挑战。构建了覆盖中国海的台风浪—风暴潮耦合数学模型,模拟了台风“烟花”作用下长江口北槽水域波浪的发展过程,分析了长江口北槽水域波浪分布特点和台风强度。研究表明:叠加风场和潮汐模式共同驱动的台风浪―风暴潮耦合模型,可以准确模拟台风期间长江口水域波浪的生成和发展过程;“烟花”台风期间,外海大浪以东方向浪为主,长江口北槽南挡沙堤沿线有效波高最大值介于1.61~5.22 m之间,自东向西逐渐衰减;台风过程中,长江口北槽水域有效波高在台风二次登录时刻达到最大,口门处有5. 0 m以上大浪;依据台风过程中长江口风速及外海波高、周期与参考规范值对比分析得出,“烟花”台风过程波浪强度约为50年一遇。  相似文献   

19.
The spin up and relaxation of an autumn upwelling event on the Beaufort slope is investigated using a combination of oceanic and atmospheric data and numerical models. The event occurred in November 2002 and was driven by an Aleutian low storm. The wind field was strongly influenced by the pack-ice distribution, resulting in enhanced winds over the open water of the Chukchi Sea. Flow distortion due to the Brooks mountain range was also evident. Mooring observations east of Barrow Canyon show that the Beaufort shelfbreak jet reversed to the west under strong easterly winds, followed by upwelling of Atlantic Water onto the shelf. After the winds subsided a deep eastward jet of Atlantic Water developed, centered at 250 m depth. An idealized numerical model reproduces these results and suggests that the oceanic response to the local winds is modulated by a propagating signal from the western edge of the storm. The disparity in wave speeds between the sea surface height signal—traveling at the fast barotropic shelf wave speed—versus the interior density signal—traveling at the slow baroclinic wave speed—leads to the deep eastward jet. The broad-scale response to the storm over the Chukchi Sea is investigated using a regional numerical model. The strong gradient in windspeed at the ice edge results in convergence of the offshore Ekman transport, leading to the establishment of an anti-cyclonic gyre in the northern Chukchi Sea. Accordingly, the Chukchi shelfbreak jet accelerates to the east into the wind during the storm, and no upwelling occurs west of Barrow Canyon. Hence the storm response is fundamentally different on the Beaufort slope (upwelling) versus the Chukchi slope (no upwelling). The regional numerical model results are supported by additional mooring data in the Chukchi Sea.  相似文献   

20.
本文基于三维波流耦合FVCOM-SWAVE数值模式,采用Jelesnianski参数化风场与再分析数据集ECMWF风场数据叠加而成的合成风场作为外力驱动力,模拟了1818号"温比亚"台风引起北黄海及渤海海域风暴潮增减水及波浪的生长与消减过程,进而分析该海域在"温比亚"台风作用下波浪对流速垂向分布的影响。研究结果表明:合成风场得到的风速最大值及出现时刻与实测数据符合较好,合成风场较为合理,能够为模拟波流耦合机制下海域水动力变化提供准确的风场条件;几个测站的风暴潮增水模拟结果与实测数据较为吻合,FVCOM-SWAVE耦合系统合理地再现了"温比亚"台风在黄渤海引发的风暴潮增水以及台风浪过程。此外,计算结果显示"温比亚"期间黄渤海海域最大有效波高分布于台风中心外围,且位于台风前进方向上,波浪最大有效波高值与台风强度有关;在台风过境期间,波流相互作用对近岸海域流速的垂向分布具有一定影响,考虑波流相互作用可有效提高台风风暴潮数值模拟精度。研究结果对台风灾害预报、防灾减灾及港口建筑选址具有一定的参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号