首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
自Simpson和Hunter(1974)在对夏季爱尔兰海的研究中提出潮混合控制潮汐锋的概念以来,人们相继在许多强潮浅水区发现了潮汐锋现象,并做了大量的研究工作,对锋区的流场结构等特征,以及潮汐锋对周围环境的影响等有了更多的了解。在我国,赵保仁(1985)首先提出黄海存在潮汐锋现象,认为冷水团的温度锋可看作是底层的潮汐锋,并可利用近最大潮流流速计算层化参量来确定黄海潮汐锋(从而亦即温度锋)的位置,而且还可以根据已有调查资料和卫星图片揭示它的一些变化规律。他与合作者的一系列研究工作表明:黄海的潮混合及潮汐锋现象对黄海的温盐和水团分布、层化现象、强温跃层的分布变化、黄海的水平和垂直环流有重要影响和直接关系,进而可以推测黄海的潮混合及潮汐锋现象对黄海的物质输运、生态环境等有着重要的影响,因此研究黄海潮混合形成的温度锋和断面温度分布的数值预报方法是非常有必要的。 以往关于潮汐锋的数值研究大多数是诊断模式,用于求解潮汐锋形成以后锋区的环流结构等,而用数值方法模拟潮汐锋的形成和演化的工作却很少。在国外,只有王东平等(Wang et al.,1990)用二维模型,对垂直涡动扩散和粘性系数采用Munk-Anderson格式与湍流封闭格式嵌套的方法以反映边界层的作用,利用实测的大气强迫力和数值计算的潮流模拟了英国Celtic海的潮汐锋和海洋层化的变化问题,尚未涉及潮汐锋的形成过程。在国内,Bi和Zhao(1993)用一个二维数值模式对黄海34°N的潮汐锋进行了模拟,较好地模拟了从4月到8月潮汐锋的形成和演化过程。在此基础上,我们将进一步利用潮流分布及海面的热量和动量输入条件,以垂直均匀状态为初始条件,模拟黄海各主要断面的温度分布、温度锋和温跃层在增温期的形成和演化过程。  相似文献   

2.
黄海潮生陆架锋的数值模拟研究   总被引:5,自引:2,他引:3  
采用海洋三维热结构及环流模式,模拟了黄海在M2潮流混合作用下,夏季温度的分布和变化特征。从数值研究的角度,对黄海陆架水域的海洋锋现象,诸如苏北浅滩外、山东半岛东端、大连、木浦水域的锋面以及锋面沿岸一侧的表层冷水区的成因及分布进行了探讨,模拟结果再现了黄海陆架锋的潮生性质。  相似文献   

3.
夏季长江冲淡水扩展的数值模拟   总被引:19,自引:4,他引:15  
建立一个σ坐标系下三维非线性斜压陆架模式,研究夏季径流量、台湾暖流、黄海冷水团、风场对长江冲淡水扩展的影响。数值试验基本再现了夏季长江冲淡水低盐水舌伸向东北的现象和渤、黄、东海的环流结构。长江径流量只影响近口门附近冲淡木朝东南方向扩展势力和整个冲淡水扩展范围的大小。台湾暖流深受底形的影响,流动路径稳定,且不受自身强度的影响,又主流远离长江口,对长江冲淡水扩展的影响不大。黄海冷水团产生的余流在长江口海区阻碍着冲淡水沿岸向南扩展,在远离长江口海区诱导冲淡水向东南运动。总的黄海冷水团的作用是使长江冲淡水低盐水舌伸向东北。黄海冷水团越强,这种作用就越明显。夏季风场在冲淡水转向东北的过程中作用显着。  相似文献   

4.
本文第一作者早在1985年就提出,潮混合效应控制着夏季黄海冷水团的边界及海面冷水分布(赵保仁,1985)。1987年又进一步通过水文调査资料和卫星图片给出了黄海周围的浅水陆架锋(或称潮汐锋)的分布及强锋区的跨锋断面中的温度、盐度和坏流结构特征,并指出夏季的黄海沿岸流在性质上属沿锋面运动的强流(赵保仁,1987a,b),而后又对黄海西部的陆架锋进行了一次专门调査(赵保仁等,1991)。此外,他还指出黄海的强温跃层的形成和转移现象也与潮混合现象密切相关(赵保仁,1989)。因此,研究潮混合现象对阐明发生在黄海的多水文物理现象都是至关重要的。 为深入了解黄海的潮混合特征,作者把渤海、黄海和东海作为一个整体完成了一次精度较高的潮汐、溯流数值计算,在潮汐、潮流的分布方面,揭示了前人尚未阐明的一些特征。本文根据这些数值结果,计算了近最大潮流流速和层化参数,阐明了渤海、黄海和东海的潮混合特征及其对降温期黄海冷水团分布变化的影响。此外,还用 Sim pson等人(1981)的能量模式计算了南黄海西部的风、潮混合效率。  相似文献   

5.
2011年春、夏季黄海、东海营养盐分布特征研究   总被引:7,自引:4,他引:3  
利用2011年4月和8月的调查资料,分析讨论了春、夏季黄海、东海营养盐分布特征及影响因素。结果表明,在调查海域,春季的硅酸盐、硝酸盐的浓度较高;夏季磷酸盐、氨氮的浓度较高。受长江冲淡水影响,长江口-浙闽近海表层营养盐浓度较高,且夏季高值区向外海扩展;外海受黑潮表层水的影响营养盐浓度较低。南黄海营养盐主要受长江冲淡水、黄海冷水团、黄海暖流的共同影响,夏季形成强烈的温跃层,在底层维持着一个稳定的高盐、富营养盐的冷水团。  相似文献   

6.
孟庆军  李培良 《海洋与湖沼》2015,46(6):1241-1254
黄海是典型的强潮驱动的陆架浅海。为了研究黄海对台风的响应特点,本文利用区域海洋模式(Regional Ocean Modeling Systems,ROMS)分别模拟了在有潮和无潮作用下黄海对台风"布拉万"的响应过程。结果表明,不管潮存在与否,"布拉万"经过黄海后都引起了海表面降温和流速的近惯性振荡响应,这种响应主要分布于黄海中部较深区域,带通滤波提取的近惯性流速具有垂向第一模态特征。同时,研究发现强背景潮流能显著地影响黄海对"布拉万"的响应过程。主要结论如下:一方面,由于潮的存在,近岸垂向混合均匀的较暖水体与远岸较冷水体之间会形成潮混合温度锋面,"布拉万"过后,暖水发生了明显的离岸扩张,尽管路径右侧的混合层降温更显著,但是左侧即黄海西岸的暖水扩张更明显;另一方面,潮的存在减弱了布拉万产生的近惯性振荡响应,半日潮流在黄海仍然占据主导地位。在混合层中潮流的作用减弱了"布拉万"产生的近惯性能量,但也使其更易穿过跃层传入黄海内部。  相似文献   

7.
渤、黄海每日海面热通量的计算   总被引:1,自引:0,他引:1  
渤、黄海是三面环陆的半封闭海区,该海区的水平环流较小(一般5~10cm/s),温跃层的发展变化主要取决于海面热交换和垂直涡动混合及对流;东海是开阔海区,近岸海区受长江冲淡水影响,深水区有世界著名的黑潮,温跃层除受海面热交换和垂直涡动混合及对流影响外,还受平流影响,中国海最强的温跃层出现于渤、黄海。国内现有的中国海海面热通量计算结果有《渤、黄、东海海面热平衡图集》和《西北太平洋表面热平衡图集》,都是关于月平均的热通量,但计算温跃层的发展变化需要每日的海面热通量。我们依中国科学院海洋研究所气象组提供…  相似文献   

8.
黄海热结构的三层模式   总被引:4,自引:6,他引:4  
本文建立了黄海热结构的一维三层模式.模式中包含海面热输入和风混合作用下形成的上均匀层,由潮流混合作用形成的下均匀层以及具有一定厚度的温跃层.我们分别得到了上、下层的卷挟速度.本模式较好地描述了黄海季节温跃层的成长和消衰过程,并比较成功地模拟出了黄海冷水团、苏北沿岸锋及其表层冷水等重要水文现象,对它们的形成机制和青岛外海水域的强温跃层现象作了较合理的解释,认为潮流混合对苏北沿岸锋及青岛外海水域强温跃层的形成起了关键性的作用.在风混合和潮混合作用下,一部分高营养盐的下层水被卷挟到上层,这对提高海区的生物生产力具有重要意义.  相似文献   

9.
依据自适应数值模型,模拟了东中国海冬、夏季三维斜压Lagrange环流。模拟发现:台湾暖流的上层水来自台湾海峡入流和台湾东北黑潮的表层水;50m以下的深底层水主要由台湾东北黑潮的次表层水入侵陆架生成。冬季对马暖流外海一侧主要由黑潮水构成,而其近陆一侧由台湾暖流和陆架混合水构成,西朝鲜沿岸流在济州海峡汇入对马暖流;夏季它还包含转向后的长江冲淡水。冬季黄海暖流并非对马暖流的直接分支,黄海暖流水是对马暖流水和陆架水混合而成,这与传统观点相悖,而与中韩黄海水循环动力学合作调查结果一致。黄海暖流东西两侧分别为2支向南流动的滑岸流。夏季黄海环流构成基本封闭的逆时针环流。冬季渤海环流主要有一逆时针大环流,但辽东湾的环流是顺时针向的。渤海环流冬强夏弱,水流在渤海海峡北进南出。  相似文献   

10.
COHERENS模式在长江口赤潮源推测中的应用   总被引:1,自引:0,他引:1  
在COHERENS基础上,建立了一个σ坐标下的三维渤海、黄海和东海海域夏季环流数值模式,较好地模拟了夏季渤海、黄海和东海海域的环流系统(黑潮、台湾暖流、对马暖流和长江冲淡水)。在此斜压流场的基础上,进行了拉格朗日颗粒追踪和欧拉输运数值模拟来推测长江口及其邻近海域赤潮高发区的可能赤潮源。提出台湾海峡、福建浙江近海和台湾东北海底存在赤潮的“种子”,它们很可能就是我国长江口赤潮高发区的赤潮源,这仍需现场的海洋调查去证实。数值模拟推测赤潮源是对流-扩散输运方法在海洋生态学领域中的一个新应用。  相似文献   

11.
简要介绍了黄海和东海的地理环境概况,着重分析调查海域的环流系统。有如下一些初步看法与结论。 台湾暖流的前缘混合水,可从长江冲淡水底层穿越而影响到苏北沿岸,直到32°N以北的浅水区域。对马暖流西侧的水体是东海混合水,而其东侧为黑潮分支。黄海暖流的流向在不同季节具有规律的摆动。黄海底层冷水团属于季节性水团,其强盛及消衰与温跃层的形成及消亡紧密相关。黄海底层冷水团与中部底层冷水并非每年彼此独立,它们的共同特征甚至比其差异更明显。夏季东海冷水不能借助爬升侵入黄海底层冷水团内部。在济州岛南部区域,中层的逆温、逆盐现象,是由黄海密度环流的扩散效应与东海冷水沿黄海底层冷水团边界的爬升这两个原因而形成的。  相似文献   

12.
- In this paper, the depth of the summer thermocline of the South Huanghai Sea and the East China Sea is calculated with two kinds of one-dimentional models, and the formation reasons are explained for the summer thermocline depth distribution characteristics in the study area. It is proved that in the shelf area of the East China Sea, tidal mixing has an important impact on the thermocline depth. And a new explanation for certain phenomena of the so-called coastal upwelling in the East China Sea is proposed.  相似文献   

13.
黄、东海陆架海域温度垂直结构类型划分与温跃层分析   总被引:4,自引:0,他引:4  
基于黄、东海陆架海域1997—1999年4个季节调查的CTD资料,采用拟阶梯函数逼近法对温度垂直剖面拟合逼近,然后按拟合均方差和跃层强度对黄、东海陆架区的温度垂直结构进行类型划分,共划分为6个类型:三层结构型(T型)、主跃层上位型(U型)、主跃层下位型(L型)、多阶梯状结构型(M型)、异常结构型(A型)和垂直均匀型(H型)。分析结果表明:温度垂直结构类型在黄海区域为:春季呈L型;夏季呈U型;秋季呈T型;冬季呈H型。东海北部春季基本呈T型;夏季西部呈T型,东部呈U型;秋、冬季演变为H型;东海南部春、夏季主要呈L型;秋、冬季除近岸出现逆温类型外,大部分区域呈H型。利用风和潮的混合卷挟模式阐述了各种温度垂直结构的形成机制,最后给出了黄、东海陆架海域的主温跃层特征值的区域分布和季节变化。  相似文献   

14.
渤海、黄海热结构分析   总被引:14,自引:4,他引:14  
在多年观测资料基础上,以月平均风应力和周平均海表水温(SST)作为外强迫,对黄海、渤海热结构进行了数值模拟.模拟结果显示渤海的热结构特征自10月至翌年3月为水温垂直均一的冬季型;5~8月为分层结构(由上混合层、跃层、潮混合层组成)的夏季型.4月和9月为两型的过渡期,最低水温出现在2月,最高水温表层出现在8月,底层则在9~10月.黄海沿岸浅水区与渤海有相似的热结构,黄海冷水团和黄海暖流对其中央槽深水区的热结构有重要影响.对底层水的影响而言,前者夏季显著而后者冬季显著,从而导致黄海(槽)的底层水与环境相比呈现夏季冷而冬季暖的特征,底层水温基本上与表面水温的年变化反相;深水区的热结构与渤海相比,均一型结构(1~3月)变短,分层型结构(5~11月)变长,底温年变幅(5℃以内)变小,跃层强度增强.模拟结果还表明,黄海暖流的动力仍然是季风环流,而对黄海冷水团的形成和发展有无动力影响提出质疑.  相似文献   

15.
Using conductivity-Temperature-depth data of a recent cruise during July 22-28, 2008 and historical data, it is found that temperature inversions occur from time to time in the Huanghai Sea(Yellow Sea) cold water mass (HSCWM) in summer. The temperature inversions are produced by the movement of the fresh and cold HSCWM masses above the warm and saline Huanghai Sea Warm Current water at the central bottom of the Huanghai Sea Trough. The non-homogeneous profiles of the temperature and the salinity suggest that vertical mixing in the HSCWM, which is of great importance to the circulation in the Huanghai Sea in summer, is weak. Trajectories of satellite-tracked surface drifters suggest that waters in the northern reach of the Huanghai Sea move southward along the 40-50 m isobaths and descend into the southern Huanghai Sea to form the western core of the HSCWM.  相似文献   

16.
秋季南黄海水文特征及海水的混合与交换   总被引:6,自引:0,他引:6  
根据1996年10月中韩合作调查获得的CTD资料,分析探讨了南黄海秋季跃层的分布特征及垂直混合状况,同时对黄海冷水团的垂向混合进行了初步探讨.还利用改进后的逐步聚类分析法划分了表、底层水团,确定了各水团的温度、盐度、溶解氧和PH值4要素的平均特征值,并根据各水团的特性和温度、盐度的平面分布特征,重点探讨了黄海水与沿岸水及东海水的混合和交换.  相似文献   

17.
黄海、东海表、上层实测流分析   总被引:12,自引:3,他引:12  
根据迄今为止所获得的142套锚碇浮标和58套卫星跟踪漂流浮标的大范围测流资料,综合分析了黄海、东海表、上层环流。研究结果更加清晰、形象、直观地展示了黑潮及其向对马暖流的分支,台湾暖流的分叉,和黄海暖流、长江冲淡水及涡旋发达海区的若干主要特征。  相似文献   

18.
Synoptic features in/around thermal fronts and cross-frontal heat fluxes in the southern Huanghai./Yellow Sea and East China Sea (HES) were examined using the data collected from four airborne expendable bathythermograph surveys with horizontal approxmately 35 km and vertical 1 m(from the surface to 400 m deep) spacings. Since the fronts are strongly affected by HES current system, the synoptic thermal features in/around them represent the interaction of currents with surrounding water masses. These features can not be obtained from climatological data. The identified thermal features are listed as follows : ( 1 ) multiple boundaries of cold water, asymmetric thermocline intrusion, locally-split front by homogeneous water of approxmately 18 ℃, and mergence of the front by the Taiwan Warm Current in/around summertime southern Cheju - Changjiang/Yangtze front and Tsushima front; (2) springtime frontal eddy-like feature around Tsushima front; (3) year-round cyclonic meandering and summertime temperature-inversion at the bottom of the surface mixed layer in Cheju - Tsushima front; and (4) multistructure of Kuroshio front. In the Kuroshio front the mean variance of vertical temperature gradient is an order of degree smaller than that in other HES fronts. The southern Cheju- Changjiang front and Cheju -Tsushima front are connected with each other in the summer with comparable cross-frontal temperature gradient. However, cross-frontal heat flux and lateral eddy diffusivity are stronger in the southern Cheju - Changjiang front. The cross-frontal heat exchange is the largest in the mixing zone between the modified Huanghai Sea bottom cold water and the Tsushima Warm Current, which is attributable to enhanced thermocline intrusions.  相似文献   

19.
The seasonal circulation in the southeastern Huanghai Sea has been studied with hydrographic data,which were observed in February and June 1994 and bimonthly during 1970-1990,and numerical model results.Horiwntal distributions of temperature and salinity in 1994 are quite different due to strong tidal mixing so that we need a analysis to see the real distributions of water masses.The mixing ratio analysis with the data of 1970-1990 shows the connection of the waters in the west coasts of Kotea Peninsula with warm and saline waters from the south in summer,which means northward inflows along the west coasts of Korea Peninsula in summer.With this flow,the seasonal circulations,which are deduced from the seasonal change of water mass distributions in the lower layer,are warm inflows in winter and mld outflows in summer in the central Huanghai Sea,and cold outflows in winter and warm inflows in summer along the west coasts of Korea Peninsula.The seasonally changed inflows might be the Huanghai Sea Warm Current.The monsoon winds can drive such circulations.However,summer monsoon winds are weak and irregular.As one of other possible dynamics,the variation of Kuroshio transport is numerically studied with allowing sea level fluctuations.Although it should be studied more,it possibly drives the summer circulations.The real circulations seem to be driven by both of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号