首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用济宁1960—2013年逐年冬季(12月—次年2月)平均气温、平均最低气温、≤-5.0℃低温日数、日照时数、降雪日数、能见度≤1000m雾日数及平均风速等资料进行数据统计分析。发现济宁冬季平均气温、平均最低气温整体呈上升的趋势,≤-5.0℃低温日数有减少的趋势,热量条件利于发展日光温室。冬季日照、降雪日数有下降的趋势,雾有略微下降的趋势,虽然日照时数减少,对日光温室生产稍显不利,但光照条件总体利于发展日光温室。冬季平均风速和平均极大风速有减小的趋势,对发展日光温室是一个较为有利的因素。  相似文献   

2.
降雪含水比(snow-to-liquid ratio,SLR)是指积雪深度与降雪融化后等量液体深度(降雪量)的比值,可用来计算积雪深度。山东有两种产生机制不同的降雪,冷流降雪主要分布在山东半岛北部沿海地区,其他类降雪在全省范围均可发生,二者的降雪含水比有明显差异。利用山东122个国家级气象观测站自建站以来至2018年12月的逐12 h降水量、日积雪深度、降水性质、日最高气温及1999—2018年的MICAPS高空、地面图资料,通过限定条件进行质量控制,统计分析了山东不同地区的降雪含水比气候特征,为积雪深度预报提供参考。结果表明:1)山东降雪含水比的变化范围为0. 1~3. 0 cm·mm~(-1),全省大部地区多年平均降雪含水比为0. 9 cm·mm~(-1),主要集中在0. 3~1. 1 cm·mm~(-1)之间;山东半岛北部沿海地区(强冷流降雪区域)的多年平均降雪含水比为1. 3cm·mm~(-1),主要集中在0. 9~2. 0 cm·mm~(-1)之间。2)降雪含水比的大小与降雪量等级有关,且存在明显月变化。全省大部地区从中雪至暴雪随着降雪量等级的增大,降雪含水比依次减小;各等级的降雪含水比月最大值均出现在1月或12月,最小值出现在11月或2月;山东半岛北部沿海地区的降雪含水比表现出更为复杂的特征,在以冷流降雪为主的11月—次年1月,中雪、大雪和暴雪的降雪含水比基本相当; 2月和3月冷流降雪不明显,降雪含水比表现出与其他地区降雪类似的特征。3)不同天气系统暴雪的降雪含水比有差异。江淮气旋暴雪过程平均降雪含水比为0. 69cm·mm~(-1),总体上呈现"北大南小,山区大沿海小"分布,中雪、大雪和暴雪的降雪含水比中位数分别为0. 8、0. 7和0. 5 cm·mm~(-1);回流形势暴雪过程的全省平均降雪含水比为0. 67 cm·mm~(-1),中雪的降雪含水比中位数为0. 8 cm·mm~(-1),大雪和暴雪均为0. 6 cm·mm~(-1);冷流暴雪的降雪含水比明显大于其他两类暴雪,中位数在1. 1~1. 6 cm·mm~(-1)之间变化,中雪、大雪和暴雪的降雪含水比中位数分别为1. 4、1. 6和1. 3 cm·mm~(-1)。  相似文献   

3.
利用地面自动气象站资料、人工加密积雪深度逐时观测资料和ERA5再分析资料,对山东2021年11月6—8日极端雨雪过程积雪特征进行分析。结果表明:(1)降水量突破同期历史极值导致此次雨雪过程成为极端天气事件,积雪深度是预报难点。(2)暴雪和积雪集中分布在山东的中北部地区,有量积雪的范围与降雪量R≥5 mm的分布范围基本一致。积雪深度具有明显的时间变化特征。(3)在山东典型回流暴雪天气形势下,有利的水汽、动力条件和冷空气降温作用,造成山东出现极端雨雪。低层的强冷平流降温导致降水发生相态转换,山东中北部出现暴雪及严重积雪。(4)积雪区降雪含水比差异大,平均降雪含水比为0.53 cm·mm-1,比历史平均值偏低。积雪深度与高空温度、相对湿度和垂直速度的配置有关,低的温度有利于降雪和积雪。地理位置、鲁中山地地形和地面风速对积雪深度有影响,海陆差异较纬度差异影响大,海拔高度影响较小。(5)欧洲中期天气预报中心业务预报模式积雪产品对山东积雪有较好的预报能力,时效近、误差小,但存在预报总体偏弱、北部偏小和中南部偏大的特点。  相似文献   

4.
采用高空和地面观测资料,对山东1999—2013年24次有相态逆转降雪过程的影响系统、出现时间、逆转前后的温度变化及各类系统逆转的天气形势特征进行了统计分析。结果表明:1)低槽冷锋、江淮气旋、黄河气旋和暖切变线可在山东产生降水相态逆转,而回流形势降雪不会产生逆转。2)山东降水相态逆转发生在11月—次年4月,以12月和1月居多,12月频率最高;有明显的日变化,14时前后最容易发生逆转,而23时—次日05时最少。3)雪转雨时最显著的特征为地面2 m气温升高,升温幅度多在1~2℃;850 h Pa以下至地面的温度至少有1~2个层次升温。4)地面2 m气温对逆转的指示性最好,降雪时在0℃左右,略高于通常降雪阈值,最低为-1℃;其次为1 000 h Pa,降雪时接近于0℃。5)对流层低层暖平流升温或温度日变化升温导致雪转雨,温度平流弱时温度日变化起主要作用。各类天气系统的逆转范围、时段等有明显差异。因此,对于降雪阈值附近的相态预报,需综合考虑低层温度平流和日变化两个因素,重点关注地面2 m气温能否升温,午后为关键时段。  相似文献   

5.
统计分析1971—2008年泰安大雾的变化特征,结果表明:泰安大雾多出现在夜间,持续时间以6~12h为多。泰安平均大雾日数秋冬季多,春夏季少,雾日主要集中在10月到翌年2月;大雾的年际变化较大,最多年份出现在1982年,为28.4天,最少年份出现在1995年,只有5.2天;1980年代大雾日数最多,1990年代大雾日明...  相似文献   

6.
利用泰安市1971—2009年观测资料,对泰安市灰霾天气的气候特征进行了分析,发现:泰安市灰霾天气具有明显的季节性特征,灰霾天气主要发生在冬半年,秋冬两季占全年灰霾日数的80.7%;灰霾日数1月最多,7,8月无灰霾日;20世纪80年代末期到90年代中期灰霾天气出现较多;20世纪70年代初到90年代末,泰安市灰霾日数与日...  相似文献   

7.
通过对2006—2015年青岛冬半年不同相态降水的统计分析得出,青岛冬半年纯雨日数1月最少,纯雪日数2月最多,12月和1月是雨夹雪及雨雪转换日数占当月降水日数比例最高的两个月。通过个例分析表明,雨雪转换过程多与冷空气入侵相联系。温度场和风场条件能较好地反映出雨雪转换的特征,降温和风向转换在850 h Pa以下层更为明显。探空资料分析表明,850 h Pa、925 h Pa、1 000 h Pa和地面气温对不同相态降水都有很好的指示意义,越低层指示性越好。0℃层高度对不同相态降水同样具有指示意义,100~500 m高度是雨雪转换的关键高度层;以不同高度层气温为指标确定出青岛冬半年降水相态预报判别指标。  相似文献   

8.
一次冬季降雪过程的多普勒雷达资料特征分析   总被引:1,自引:0,他引:1  
2005年2月17~18日青岛出现了一次大雪过程,通过对多普勒雷达资料的分析,发现多普勒雷达资料很好地揭示了本次降水过程的成因。降水初期,主要为暖湿气团从相对较暖的海面上移动到相对较冷的陆地上冷却凝结产生的降雪,所以强度很弱;在0~2.7km高度上,在倒槽上发展起来的以青岛为中心的中尺度气旋性风场的出现,预示着降水强度的迅速增强和降水量级的改变,该风场的破坏,则预示着降雪强度的迅速减弱;回波强度在30~35dbZ时,降雪强度即可达到较强。  相似文献   

9.
积雪密度演变对北极积雪深度模拟的影响   总被引:1,自引:1,他引:0  
尹豪  苏洁  Bin Cheng 《海洋学报》2021,43(7):75-89
积雪具有复杂的时空分布,在高纬度地区的气?冰?海耦合系统中扮演了重要的角色。准确的积雪质量平衡计算可以帮助我们更好地理解海冰演变过程以及极区冰雪与大气之间的相互作用。雪密度是影响积雪质量平衡众多因素中的重要因子。现有的一维高分辨率冰雪热力学模型(如HIGHTSI)中,使用常数块体雪密度均值将降雪雪水当量转化为积雪深度。本文参考拉格朗日冰上积雪模型(SnowModel-LG)模式对积雪分层压实的处理,简化为新、旧两个雪层,并在质量守恒条件下同时考虑新、旧雪层深度对压实增密的响应,将该物理过程加入HIGHTSI模式中。利用ERA-Interim再分析数据作为大气强迫,针对北极15个冰质量平衡浮标沿其漂移轨迹模拟了降雪积累期海冰表面雪密度变化对积雪深度变化的影响,在原HIGHTSI设置下分别采用定常块体雪密度均值330 kg/m3(T1试验)、接近实际的常数新雪密度200 kg/m3(T2试验)以及改进后框架下新、旧雪层随时间压实增密的雪密度(T3试验)计算积雪深度,并将模拟结果与浮标观测进行对比。结果表明,本文改进的算法对雪密度变化的处理更为合理,且能较好地再现积雪深度的变化;考虑新、旧雪层深度对压实增密的响应能较好地避免以较低的降雪密度持续过度积累,以浮标观测为标准,分层积雪密度压实计算得到的平均绝对误差相对T2减小了5 cm。  相似文献   

10.
利用2016年1月至2017年12月北部湾浮标站观测资料,分析了北部湾海雾的特点。结果表明,2016年北部湾出现海雾37 d,2017年为19 d; 3月海雾日数最多,4月次之,2016年12月和2017年6—10月未出现海雾;一天中出现雾的峰值时间为03:00—05:00,雾消散的峰值时间为08:00—10:00;雾的维持时间绝大部分在3 h以内。浮标站与北海站、涠洲岛站的大气能见度、相对湿度对比分析表明,在海雾日,涠洲岛站的平均大气能见度、平均相对湿度更接近浮标站,涠洲岛站平均大气能见度比浮标站大0.7~3.3 km,平均相对湿度比浮标站小1.6%~2.4%。不同的海雾过程由于影响系统不同,海上和陆地上雾的持续时间、大气能见度有所不同,当西南暖低压、高压后部影响造成大雾时,涠洲岛站的大气能见度与浮标站更接近,北海站的大气能见度与浮标站相差较大;而均压场造成海雾时,3个观测站的大气能见度变化趋势较为一致,凌晨到上午有雾,中午到下午雾消散。  相似文献   

11.
本研究利用性腺指数周年检测及性腺组织切片观察的方法,对蓬莱海头村海区浮筏养殖的风信标扇贝性腺发育及繁殖规律进行研究。自2016年1月—2016年12月期间,课题组除1、2月份外(分别为4、2次)每月采集蓬莱海头村海区浮筏养殖的风信标扇贝性腺样品3次,同时测定采样点水温,采用组织学方法和肉眼观察分析其性腺发育的季节性变化规律,探究海水温度季节性变化对性腺发育的影响。结果表明:蓬莱海区浮筏养殖的风信标扇贝性腺发育周期为一年,每年经历4个时期,分别为增殖期(12月—次年1月)、生长期(2—3月)、成熟期(4—6月)、休止期(7—11月)。海水温度变化与风信标扇贝性腺发育相关性显著(P 0.05):风信标扇贝经过12月—次年3月的低温刺激和营养积累后,到达其繁殖期(4—6月),期间平均水温为11.2℃,并在4月上旬出现性腺指数峰值(24.25);当水温高于20.0℃时,性腺指数较低且小于10.00。本研究结果填补了中国风信标扇贝性腺发育研究方向的空白,为人工繁育风信标扇贝提供了重要的理论指导。  相似文献   

12.
基于珠江口大万山海洋站(21°56′N, 113°43′E)观测的1974—2020年逐日平均海表温度(sea surface temperature, SST)资料, 参照世界气象组织关于海洋热浪(marine heatwave, MHW)定义、强度分类标准及全球与北半球年平均表面温度资料, 采用相关及对比方法, 分析珠江口海洋热浪的变化趋势, 结果表明: (1)近47年来珠江口每年都出现MHW事件, 平均每年出现6.5次, 最多年13次(2020年), 且每年出现次数呈上升趋势, 平均每次持续时间为11.7d, 最长62d; (2)近47年来每年珠江口的MHW日数呈显著增加趋势, 上升率为1.81d·a-1; (3)此时期各级MHW强度的出现日数占总出现日数的比例分别为中度18.92%, 强烈53.24%, 严重24.06%, 极端3.77%; (4)珠江口MHW日数上升及出现极端MHW的主要原因可能与全球气候变暖、南海高压增强和季风减弱有关。预估未来珠江口的MHW日数还会呈现上升趋势。  相似文献   

13.
利用1959年1月—2008年12月的ECMWF ORA-S3资料,系统研究了印度洋塞舌尔穹隆区不同季节海表面温度(SST)的年际变化特征及其与ENSO、印度洋偶极子、穹隆区的温跃层深度/海面风应力、印尼贯穿流的关系。结果表明,穹隆区的SST在5—6月存在最明显的异常闭合中心(5月的中心值还较热带印度洋其它区域大),而在8—11月最不明显;区域平均的SST年际异常在2月最大,在8—9月最小。一般而言,北半球秋冬季和次年春季的穹隆区SST正(负)异常对应El Nio(La Nia)年或正(负)的印度洋偶极子年,但也有例外,北半球夏季尤其如此。相关分析表明,11月至次年7月(尤其是5月)深(浅)的温跃层对应穹隆区高(低)的SST;而11月至次年3和5月的Ekman抽吸减弱(增强)时,次年1—6月和8月的穹隆区SST升高(降低),其中Ekman抽吸中的2项在总体上起相反作用,但除了对2和8月的SST,风应力旋度项的贡献都占优;风应力大小(蒸发)主要影响10月至次年6月的SST(负相关);当1—2月向北的Ekman输送弱(强)或7—8月向南的Ekman输送强(弱)时,穹隆区的SST高(低);而8—11月的印尼贯穿流流量增大(减小)时,直至次年上半年的穹隆区SST皆升高(降低)。可见无论是穹隆区SST的年际变化本身还是它与不同物理过程/影响因子的关系均存在明显的季节差异性。  相似文献   

14.
山东半岛冷流暴雪的WRF数值模拟方案研究   总被引:1,自引:0,他引:1  
采用WRF数值模式,选择2005年12月6—7日和21日两次冷流暴雪天气过程进行模拟,通过有Kessler微物理方案和无微物理方案进行了敏感性试验对比分析。结果表明,有Kessler微物理方案对冷流降雪过程模拟效果好,模拟的降雪量和降雪落区更接近于实况,对流层低层温度平流和风场辐合能够揭示冷流暴雪产生的原因。而无微物理方案模拟的山东半岛降雪量较实况明显偏少,850h Pa温度冷平流的绝对值偏小,且风向辐合的交角偏小,辐合强度偏小。  相似文献   

15.
利用常规气象观测资料和NCEP/NCAR逐6 h再分析资料,对2015年11月23—24日山东南部出现的一次罕见特大暴雪天气过程进行诊断分析。结果表明:1)这是一次典型的回流形势降雪,850 h Pa东南风急流影响的鲁南地区降雪强度较大,而东北风急流影响的区域降雪强度较弱。2)700 h Pa强西南低空急流、850 h Pa东南低空急流为鲁南地区降雪提供了充沛的水汽,水汽通量的强辐合区域即为大暴雪的发生区域。3)暴雪区上空散度呈现出弱辐散—强辐合—强辐散的垂直结构;暴雪落区与高空的强辐合中心以及强上升运动中心吻合度较高。4)暴雪期间,850~925 h Pa之间维持一个逆温层;强冷空气使得925 h Pa以下边界层温度锐降导致降雨迅速转雪,降雪持续时间长是鲁南地区产生异常强降雪的重要原因。  相似文献   

16.
使用滕州1960—2010年数九期间的逐日气温资料,计算各九及数九的平均气温、最高气温、最低气温及各级日最高最低气温日数,将资料分为近20a(1991—2010年)及前30a(1961—1990年),用Kruskal-Wallis检验分析两组样本是否有显著差异,结果表明1990年代以来,数九期间平均气温比前30a增高了2.1℃,平均最高气温升高了1.3℃,平均最低气温升高了2.7℃,这些增温是显著的。极端最低气温也显著升高,而极端最高气温变化并不显著。近20a数九平均气温、平均最低气温冷在四九,极端最低气温冷在一九。数九期间日最高气温5℃日数显著减少,而≥10℃日数显著增加,日最低气温≤-10℃及介于-10~-5℃日数均极显著减少,而-5℃日数极显著增加。  相似文献   

17.
地形对山东半岛冬季冷流暴雪影响的一次数值模拟研究   总被引:1,自引:0,他引:1  
利用MM5数值模式对山东半岛北部2005年12月3~4日暴雪天气进行模拟试验,研究了山脉地形和渤海对半岛北部冷流暴雪的影响,实验表明半岛北部的山脉地形对冷流暴雪的落区和强度影响较大,有山脉地形时降雪强度增大,降雪中心略北移,无渤海时没有明显降雪;同时,保留地形时的上升运动、低层风场辐合和正涡度区都要比无地形和渤海时大得多.  相似文献   

18.
利用常规资料及微波辐射计、风廓线等新型探测资料,分析了2007年2月7日当大尺度环流形势非常有利并且华北东部地区出现大范围降雪的情况下,京津地区未产生降水及导致预报失误的主要原因。大范围环流形势演变分析结果表明,700 hPa以上辐合系统前部的偏南气流将水汽输送到降水区,且回流冷空气形成的冷楔和华北倒槽提供了有利的背景条件。弱冷空气南压导致倒槽填塞没有影响京津地区而且边界层内辐合系统产生的上升气流较弱是造成京津绝大部分地区未出现降水的原因之一。大湿度区层次高、湿层薄是北京城区没有降雪的另一重要原因。造成此次降雪空报的主要原因是:数值模式对边界层相对湿度预报过高,且时效间隔较长、其间的天气形势难以判断;不利于降雪的实况信息显现得过晚。北京东部个别测站出现降水的可能原因是在短时回流条件具备的同时有高空槽过境,但动力抬升条件差。在较强偏南暖湿气流提供水汽的同时,海拔高、水汽易于凝结是北京西北部的几个较高海拔测站出现降雪的原因。  相似文献   

19.
青岛沿海一次降雪过程的多普勒雷达资料分析   总被引:1,自引:0,他引:1  
本文对2005年2月17日至18日青岛降雪过程的雷达资料进行了分析。多普勒雷达资料很好地揭示了青岛沿海成为本次过程区域降水中心的原因,除了有利的水汽输送,更重要的是青岛沿海出现了一个维持约半小时的中尺度气旋。在对雷达资料的风廓线资料分析时,发现系统中存在标注ND字符的异常原因。  相似文献   

20.
利用常规的地面观测资料、高空探测资料、自动气象站1 h间隔观测资料、NCEP/NCAR再分析资料(1°×1°,6 h)和ERA5再分析资料(0. 25°×0. 25°,1 h),针对1999—2013年山东省12例江淮气旋降雪过程,总结了降水形态类型及时空分布、相态转换等特征并讨论了降水相态"逆转"现象的物理机制。结果表明:1)江淮气旋降雪过程的降水形态种类多样,可出现雨、雪、雨夹雪、冰雹、冰粒、霰、米雪和雨凇,降水相态转换过程中,除了雨夹雪,冰粒也是一种过渡形态; 2)冰雹、冰粒、霰、米雪和雨凇5种特殊降水形态最易出现在2月和3月,"雷打雪"现象亦多发于2月和3月;3)鲁东南和半岛南部地区以降雨为主,鲁西北地区多出现降雪,雷暴集中出现在鲁中的中西部和鲁南地区,尤其是鲁东南地区; 4)江淮气旋降雪过程相态转换的基本形式为雨转雪,以有无明显雨雪分界线为依据,可分为"典型雨转雪"和"无明显雨雪转换"两类,二者的影响系统特点显著不同;5)范围较大的相态逆转现象易发区域在地面雨雪分界线附近,位于地面倒槽后部,走向与地面倒槽槽线走向一致。气旋生成前低层暖温度平流增强引起低层增温以及气温日变化导致的中午前后近地层浅薄增温均可引起相态逆转,上述两个因素均与地面倒槽的发展态势关系密切。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号