首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
俯冲带是地球上最大地震的发源地。俯冲板块正断层为海水进入上地幔,引起蛇纹石化提供通道,其地震可能引发大海啸。研究其动力学机制,对推动俯冲带动力学过程研究及保护人类生命安全都具有重要意义。本文综述了西太平洋汤加海沟、马里亚纳海沟、伊豆-小笠原海沟和日本海沟俯冲板块外缘隆起带到海沟附近的正断层分布与变形特征,定量化阐明了地球动力学模拟方法揭示的西太平洋俯冲板块正断层形成过程。研究发现汤加海沟和马里亚纳海沟的正断层平均断距最大;俯冲板片有效弹性厚度变化直接影响正断层形成区域,而有效弹性厚度与板块年龄相关性较大。本文系统性回顾了西太平洋俯冲动力学研究并且提出了对未来相关研究的启示。  相似文献   

2.
西太平洋具有全球最活跃的板块构造与海陆相互作用过程,西太平洋的卡罗琳(Caroline)海盆形成于特提斯海与太平洋之间,处于印尼海道的咽喉区域,海盆范围正好对应了西太平洋暖池的大部分海域。其内部地形复杂,具有特征的隆起和残留洋中脊,而周围具有年轻活跃的俯冲带和洋中脊,并且与菲律宾海、太平洋、Ontong-Java大火成岩省、众多深海沟等相互作用,是研究俯冲带和洋中脊初始形成机理与动力学以及固体地球与海水相互作用的理想场所。过去对Caroline海盆的研究主要是美国和日本科学家在20世纪70—80年代完成的,在很多构造单元的成因和属性的解释上存在很大争议,很少涉及多圈层相互作用方面的研究。国家自然科学基金委重大研究计划"西太平洋地球系统多圈层相互作用"的实施推动了西太平洋基础海洋科学研究的步伐,通过综合地球物理和地球化学分析,对Caroline海盆的构造边界过程和海盆岩石圈蛇纹岩化程度等开展详细研究,探索深部过程与海底过程之间,特别是在水和热流通量方面的联系。Caroline海盆是提出典型海洋微板块演化模式和未来进一步深入研究(包括科学大洋钻探)的关键区域,其复杂多样的边界发育初始俯冲边界、初始扩张边界以及火山链和张裂中心,其板内地质构造也曾存在复杂的海底扩张和构造转换,并且显示强烈的板块边界和板内构造耦合过程。  相似文献   

3.
利用大地水准面起伏模拟琉球海沟南、中、北段岩石圈的挠曲,经非线性最小二乘拟合,得到琉球海沟洋坡各段岩石圈的有效弹性厚度(T4)。模拟结果表明,琉球海沟洋坡的T4中段小,南北段大;南北段相比,南段小,北段大;与其他海沟相比琉球海沟洋坡的T4非常小。不同的Te值表明俯冲板片与岛孤之间不同的耦合程度,为进一步研究西太平洋边缘沟一弧一盆体系的动力学问题提供了新的视角。  相似文献   

4.
南海北部白云凹陷及其邻区的岩石圈强度分析   总被引:2,自引:0,他引:2       下载免费PDF全文
选取纵穿南海北部陆缘的长排列多道地震剖面,利用挠曲回剥和重力异常模拟相结合的过程导向法(process-oriented gravity modelling,POGM),计算了研究区内不同构造单元同张裂及裂后阶段的岩石圈有效弹性厚度(effective elastic thickness,Te),并对其分布特征进行了详细分析。计算结果显示:张裂过程中岩石圈强度很弱;而裂后阶段岩石圈强度在不同构造单元并不相同,其中番禺低隆起和下陆坡区强度较高,Te约为15km,而在北部坳陷带为7km左右,白云凹陷地区强度最低,仅为5km左右。获得的岩石圈强度结果,加深了对南海北部大陆边缘盆地特征和岩石圈构造演化过程的认识,具有重要的意义。  相似文献   

5.
大洋和大陆边缘岩石圈有效弹性厚度的研究意义   总被引:4,自引:1,他引:4  
大洋岩石圈有效弹性厚度分布在 (45 0± 15 0 )℃等温面内 ,并且随着加载时岩石圈年龄的增加而增加。因此 ,大洋岩石圈的挠曲刚度强烈地依赖岩石圈的热结构。一些海隆下岩石圈有效弹性厚度的降低 ,可能是岩石圈经历过热活化 ,岩石圈热年龄降低的结果。大西洋一些群岛的岩石圈有效弹性厚度小于理论值 ,则反映了岩石圈结构的不同。在海沟 ,板块的挠曲也是影响岩石圈有效弹性厚度的因素 ,它降低了岩石圈的强度。在被动大陆边缘海陆岩石圈交界处 ,向陆的方向 ,岩石圈弹性厚度比同年龄的大陆或大洋岩石圈的小 ,表明强度明显降低 ;向大洋方向 ,岩石圈的弹性厚度与正常的大洋岩石圈弹性厚度吻合。在活动大陆边缘的挠曲前陆盆地和造山带 ,岩石圈有效弹性厚度变化较大 ,部分地区受先前的岩石圈低强度影响 ,而表现出岩石圈强度的弱化。同时 ,这种方法还广泛地用于大洋中脊岩浆侵位、地幔流动、南太平洋超级海隆的动力学机制、大陆边缘的变形和构造演化、新生岩石圈的力学性质和流变学性质的研究  相似文献   

6.
张志毅  韩喜彬  许冬 《海洋学报》2022,44(11):63-76
雅浦海沟是西太平洋“沟–弧–盆”体系的重要组成部分。在雅浦海沟北部,雅浦海沟与马里亚纳海沟呈典型的垂直相交。本文对该海域的地貌进行了详细的研究。结果表明,两条海沟连接处附近,海沟的水深、形态、剖面等都发生明显变化,且具有分段性,两侧斜坡上拥有隆起、凹陷、断裂等地貌,这些特征与海沟连接处特殊的俯冲位置具有密切的联系;通过地貌特征和板块扩张速度判断,20 Ma前帕里西维拉海盆扩张中心应位于137°35′34″E附近,雅浦海沟很可能是由帕里西维拉海盆暴露出来的扩张中心转变而成。  相似文献   

7.
南海东部古扩张脊处于欧亚板块和太平洋板块的汇聚地带,其东侧为马尼拉海沟、北吕宋海槽和西吕宋海槽,由于受到多个构造单元的相互作用,使其处于复杂的构造环境中。南海东部古扩张脊俯冲过程的研究对深入理解南海海盆构造演化、火山及地震活动等具有重要意义,同时也是今后南海构造研究的重要方向之一。在总结前人研究基础之上,探讨南海东部古扩张脊俯冲时间、俯冲深度及动力学过程。南海板块在16 Ma之后,由于菲律宾板块NW向仰冲的作用,使南海东部古扩张脊被动地沿马尼拉海沟进行俯冲,形成了现今马尼拉海沟中段的构造格局。古扩张脊俯冲深度为200~300km,并且在约100km处发生板片撕裂,造成古扩张脊两侧俯冲角度的不同。  相似文献   

8.
西太平洋区的边缘海是全球构造壮观区域之一.在板块构造图案中,它既是板块聚敛带又是岩石圈板块张裂区.在这些边缘海中尤以南海更为突出,它是东南亚油气资源富集区之一.本文根据新近获得的一些地球物理调查资料和海上钻探研究成果,试图以板块构造观点,对南海新生代岩石圈板块的构造变动与沉积分布的关系作一简要概述,不当之处请予指正.一、南海新生代岩石圈板块的演化南海位于印度洋-澳大利亚、太平洋和欧亚三大板块的聚合处,直接或间接地受这三大板块的相对运动和相互作用的控制,且在整个地史演变过程中,其地质构造的发生、发展也较为复杂.本-阿勃拉姆和上田(Ben-Avraham&Uyeda,1973)在南海中央海盆发现有东西向地磁条带的存在;而后泰勒和赫茨(Taylar&Hayes,1979)又进一步测定南海海盆的地磁异常条带具有良好的线性,走向为北东东,并根据其对称性,确定了海盆新生代扩张轴位于北纬16°附近,其主要扩张期为中渐新世至早中新世(17—32m·y)这与Watanabe等(1977)按照热流值确定的年龄(14—36m·y)基本吻合.据地震折射资料认为:海盆为洋壳性质,厚度变化在5—6公里之间.路德维格(Ludwing,1970)曾在其些折射剖面上见到声波速度为6.5—7.4公里/秒的层3(L3)厚度约为正常洋  相似文献   

9.
南海地质、地球物理调查研究及研究方向   总被引:1,自引:0,他引:1  
南海是西太平洋最大的边缘海之一。它东邻台湾、菲律宾群岛,西界中南半岛,北靠华南大陆,南至加里曼丹岛,面积约350x104km2,约为渤海、黄海和东海总面积的3倍,经济和地理位置十分重要。南海与台湾、菲律宾岛弧-海沟构成酉太平洋边缘最完整的沟-弧-盆构造体系,既具有西太平洋边缘沟-弧-盆构造体系的同一性,又具有其本身的独特性。因此,研究台湾-菲律宾及南海沟-弧-盆构造体系,对深入了解和认识西太平洋边缘沟-弧-盆构造体系的特征和演化规律具有特别重要意义。南海位于欧亚板块、太平洋板块和印度-澳大利亚板…  相似文献   

10.
雅浦海沟-岛弧构造体系是菲律宾海板块与太平洋板块、卡罗琳板块相互作用而形成的构造俯冲带,其南北两段俯冲带在海底地形地貌、地球物理场、应力场特征等方面表现出显著的差异。北段俯冲方向为近东西向,总体表现为俯冲角度较小、俯冲深度浅、俯冲速度较快、应力场呈俯冲拉张型等特征;南段由东西方向的俯冲过渡至北北西向,总体表现为俯冲角度大、俯冲深度较深、俯冲速度极慢、应力场呈俯冲挤压型等特征。这些差异的形成经历了2个主要的构造演化阶段:菲律宾海板块与太平洋板块在晚始新世至晚渐新世期间相互作用并形成了古马里亚纳-雅浦海沟;晚渐新世以来菲律宾海板块与卡罗琳板块的相互作用对古海沟构造改造,进而造就了雅浦海沟-岛弧当今复杂的构造形态。  相似文献   

11.
Morphology and tectonics of the Yap Trench   总被引:5,自引:0,他引:5  
We conducted swath bathymetry and gravity surveys the whole-length of the Yap Trench, lying on the southeastern boundary of the Philippine Sea Plate. These surveys provided a detailed morphology and substantial insight into the tectonics of this area subsequent the Caroline Ridge colliding with this trench. Horst and graben structures and other indications of normal faulting were observed in the sea-ward trench seafloor, suggesting bending of the subducting oceanic plate. Major two slope breaks were commonly observed in the arc-ward trench slope. The origin of these slope breaks is thought to be thrust faults and lithological boundaries. No flat lying layered sediments were found in the trench axis. These morphological characteristics suggest that the trench is tectonically active and that subduction is presently occurring. Negative peaks of Bouguer anomalies were observed over the arc-ward trench slope. This indicates that the crust is thickest beneath the arc-ward trench slope because the crustal layers on the convergent two plates overlap. Bouguer gravity anomalies over the northern portion of the Yap Arc are positive. These gravity signals show that the Yap Arc is uplifted by dynamic force, even though dense crustal layers underlie the arc. This overlying high density arc possibly forces the trench to have great water depths of nearly 9000 m. We propose a tectonic evolution of the trench. Subduction along the Yap Trench has continued with very slow rates of convergence, although the cessation of volcanism at the Yap Arc was contemporaneous with collision of the Caroline Ridge. The Yap Trench migrated westward with respect to the Philippine Sea Plate after collision, then consumption of the volcanic arc crust occurred, caused by tectonic erosion, and the distance between the arc and the trench consequently narrowed. Lower crustal sections of the Philippine Sea Plate were exposed on the arc-ward trench slope by overthrusting. Intense shearing caused deformation of the accumulated rocks, resulting in their metamorphism in the Yap Arc.  相似文献   

12.
We present major and trace element data of lava recovered from the northern Yap Trench in the western Pacific and discuss their petrogenesis and tectonic implications within the framework of interactions between the Caroline Ridge and Yap Trench. Rocks were collected from both landward and seaward trench slopes and exhibited geochemical characteristics similar to backarc basin basalt (BABB) and mid-ocean ridge basalt (MORB), including high Fe content, tholeiitic affinity, high TiO2 value at a given FeOT/MgO ratio, Ti/V ratio between 20 and 50, low Ba/Nb ratio and Th/Nb ratio, and trace element patterns commonly displayed by BABB and MORB, which are distinct from arc lava. These rocks seem to have been generated during mantle upwelling and decompression melting at a spreading center. However, compared with typical forearc lava produced by seafloor spreading in the Mariana forearc region, such as the early Eocene forearc basalts and late Neogene forearc lava in the southernmost Mariana Trench, the Yap Trench lava is derived from a more fertile mantle and feature a more minor subduction component; thus, they cannot be the products of forearc mantle decompression melting. We suggest that the landward slope lava represents backarc basin crust that was overthrust onto the forearc lithosphere during the collision of the Caroline Ridge with the Yap Trench (20–25 Ma), which played a key role in the evolution of the Yap subduction system. Moreover, the seaward slope lava represents the subduction plate crust that accreted onto the deep trench during the collision. This collision event resulted in the cessation of Yap Arc magmatism; thus, the Yap Trench volcanic rocks (<25 Ma) previously suggested to be arc magma products may actually represent the nascent island arc lava with a lower subduction component than in the mature Mariana Arc lava.  相似文献   

13.
Swath bathymetric, sonar imagery and seismic reflection data collected during the SOPACMAPS cruise Leg 3 over segments of the Vitiaz Trench Lineament and adjacent areas provide new insights on the geometry and the stuctural evolution of this seismically inactive lineament. The Vitiaz Trench Lineament, although largely unknown, is one of the most important tectonic feature in the SW Pacific because it separates the Cretaceous crust of the Pacific Plate to the north from the Cenozoic lithosphere of the North Fiji and Lau Basins to the south. The lineament is considered to be the convergent plate boundary between the Pacific and Australian Plates during midde to late Tertiary time when the Vitiaz Arc was a continuous east-facing are from the Tonga to the Solomon Islands before the development of the North Fiji and Lau Basins. Progressive reversal and cessation of subduction from west to east in the Late Miocene-Lower Plioene have been also proposed. However, precise structures and age of initiation and cessation of deformation along the Vitiaz Trench Lineament are unknown.The lineament consists of the Vitiaz Trench and three discontinuous and elongated troughs (Alexa, Rotuma and Horne Troughs) which connect the Vitiaz Trench to the northern end of the Tonga Trench. Our survey of the Alexa and Rotuma Troughs reveals that the lineament is composed of a series of WNW-ESE and ENE-WSW trending segments in front of large volcanic massifs belonging to the Melanesian Border Plateau, a WNW trending volcanic belt of seamounts and ridges on Pacific crust. The Plateau and Pacific plate lying immediately north of the lineament have been affected by intense normal faulting, collapse, and volcanism as evidenced by a series of tilted blocks, grabens, horsts and ridges trending N 120° to N100° and N60°–70°. This tectonism includes several normal faulting episodes, the latest being very recent and possibly still active. The trend of the fault scarps and volcanic ridges parallels the different segments of the Vitiaz Trench Lineament, suggesting that tectonics and volcanism are related to crustal motion along the lineament.Although the superficial observed features are mainly extensional, they are interpreted as the result of shortening along the Vitiaz Trench Lineament. The fabric north of the lineament would result from subduction-induced normal faulting on the outer wall of the trench and the zig-zag geometry of the Vitiaz Trench Lineament might be due to collision of large volcanic edifices of the Melanesian Border Plateau with the trench, provoking trench segmentation along left-lateral ENE-WSW trending transform zones. The newly acquired bathymetric and seismic data suggest that crustal motion (tectonism associated with volcanism) continued up to recent times along the Vitiaz Trench Lineament and was active during the development of the North Fiji Basin.  相似文献   

14.
A detailed heat flow study of some areas in the Middle America Trench is attempted. Forty six measurements were obtained in the region between the Tres Marias Islands and the Tehuantepec Ridge. The stations were concentrated in three detailed survey areas and 4 profiles. The obtained data show a steep decrease in the heat flow values towards the southern portion of the trench. The detailed survey area, located in the northern end of the trench (Area 20–1) has the highest heat flow average (122 mW m-2), however a characteristical pattern was observed: most data within the Rivera Plate have higher than average heat flow due to the young age of this plate and contrast with the low values associated with the continental lithosphere of the North America Plate. Areas 20–3 and 20–4 have lower averages (50 and 27 mW m-2 respectively) and they coincide with portions of the Guadalupe Plate, proposed by Klitgord and Mammerickx (1982) and assumed to be older than the Cocos Plate, though magnetic lineations have not been directly correlated with age in those areas.  相似文献   

15.
Bathymetry of the Tonga Trench and Forearc: a map series   总被引:1,自引:0,他引:1  
Four new bathymetric maps of the Tonga Trench and forearc between 14 °S and 27 °S display the important morphologic and structural features of this dynamic convergent margin. The maps document a number of important geologic features of the margin. Major normal faults and fault lineaments on the Tonga platform can be traced along and across the upper trench slope. Numerous submarine canyons incised in the landward slope of the trench mark the pathways of sediment transport from the platform to mid- and lower-slope basins. Discontinuities in the trench axis and changes in the morphology of the landward slope can be clearly documented and may be associated with the passage and subduction of the Louisville Ridge and other structures on the subducting Pacific Plate. Changes in the morphology of the forearc as convergence changes from normal in the south to highly-oblique in the north are clearly documented. The bathymetric compilations, gridded at 500- and 200-m resolutions and extending along 500 km of the landward trench slope and axis, provide complete coverage of the outer forearc from the latitude of the Louisville Ridge-Tonga Trench collision to the northern terminus of the Tonga Ridge. These maps should serve as a valuable reference for other sea-going programs in the region, particularly the Ocean Drilling Program (ODP) and the National Science Foundation MARGINS initiative.  相似文献   

16.
The Pacific-type orogeny in the Tohoku Island Arc is discussed using marine geological and geophysical data from both Pacific and Japan Sea along the Tohoku region. The Tohoku Arc is divided into three belts; inner volcanic and sedimentary belt, intermediate uplifted belt and outer sedimentary trench belt. Thick Neogene sediments which are distinguished in several layers by continuous seismic reflection profiling occur on both sides of the intermediate belt. The dominant structural trend of the Neogene layers is approximately parallel to the coast line and to the axis of the Japan Trench and has a extension of approximately 100 km in each unit on the Pacific side. The trench slope break is an uplifted zone of Neogene layers. The structural trend of the upper continental slope and outer shelf is relative uplift of the landward side. Tilted block movement toward the west is the dominant structural trend on the Japan Sea side. Structural trends which can be seen in both the inner and outer belts may suggest horizontal compressional stress of east to west. Orogenesis and tectogenesis in the Tohoku Arc has been active since early Miocene or latest Oligocene. It may be implied that the Japan Trench was not present during Late Cretaceous to Paleogene, as is suggested by the volcanism of the Tohoku Arc. The basic framework of the present structure was formed during late Miocene to early Pliocene in both the inner and outer belts. Structural movements were reactivated during late Pleistocene.  相似文献   

17.
We conducted a detailed analysis of along-trench variations in the flexural bending of the subducting Pacific Plate at the Tonga-Kermadec Trench. Inversions were conducted to obtain best-fitting solutions of trench-axis loadings and variations in the effective elastic plate thickness for the analyzed flexural bending profiles. Results of the analyses revealed significant along-trench variations in plate flexural bending: the trench relief(W_0) of 1.9 to 5.1 km;trench-axis vertical loading(V_0) of –0.5×(10)~(12) to 2.2×(10)~(12) N/m; axial bending moment(M_0) of 0.1×(10)~(17) to 2.2×(10)~(17) N;effective elastic plate thickness seaward of the outer-rise region(T_e~M) of 20 to 65 km, trench-ward of the outer-rise(T_e~m) of 11 to 33 km, and the transition distance(X_r) of 20 to 95 km. The Horizon Deep, the second greatest trench depth in the world, has the greatest trench relief(W_0 of 5.1 km) and trench-axis loading(V_0 of 2.2×(10)~(12) N/m); these values are only slightly smaller than that of the Challenger Deep(W_0 of 5.7 km and V_0 of 2.9×(10)~(12) N/m) and similar to that of the Sirena Deep(W_0 of 5.2 km and V_0 of 2.0×(10)~(12) N/m) of the Mariana Trench,suggesting that these deeps are linked to great flexural bending of the subducting plates. Analyses using three independent methods, i.e., the T_e~M/T_e~m inversion, the flexural curvature/yield strength envelope analysis, and the elasto-plastic bending model with normal faults, all yielded similar average Te reduction of 28%–36% and average Te reduction area S¢Te of 1 195–1 402 km~2 near the trench axis. The calculated brittle yield zone depth from the flexural curvature/yield strength envelope analysis is also consistent with the distribution of the observed normal faulting earthquakes. Comparisons of the Manila, Philippine, Tonga-Kermadec, Japan, and Mariana Trenches revealed that the average values of T_e~M and T_e~m both in general increase with the subducting plate age.  相似文献   

18.
在对冲绳海槽及邻区构造地质学和热液地质学调查研究成果进行全面总结的基础上,将深部地球动力学机制、冲绳海槽形成演化、岩浆作用过程、热液系统结构、流体循环模式和成矿作用特征等多方面的问题,纳入到统一的框架下,探讨了冲绳海槽构造地质过程对热液活动和成矿作用的控制机理。分析认为,区域中尺度地幔流引起了东亚大陆边缘岩石圈向东的蠕散,并驱动了菲律宾海板块沿琉球海沟向欧亚板块之下的俯冲。在弧后小尺度地幔对流、岩石圈减薄、板片反卷和俯冲后退的共同作用下,冲绳海槽发生弧后张裂。张裂作用在岩石圈内形成了网状破裂系统,为岛弧和弧后岩浆上涌提供了通道,并且引起了不同来源岩浆的干扰和混合。侵位到地壳浅部的岩浆为热液活动提供了热源和主要成矿物质来源,是影响热液活动分布的主要因素。沉积层覆盖改变了流体的浅部循环结构和原始流体成分。热液区内普遍存在的流体相分离过程,导致了广域成矿作用的发生。  相似文献   

19.
我国南海历史性水域线的地质特征   总被引:3,自引:1,他引:2  
40a的海洋地质、地球物理实测研究表明,九段线不仅是显示我国南海主权的历史性水域线,而且总体上也是南海与东部、南部和西部陆区及岛区的巨型地质边界线。根据实测数据,本文将从地质成因、来源、演化的角度论述此南海历史性水域线的合理性。主要结论包括:历史性水域线的东段在地形上基本与马尼拉海沟一致,海沟西侧为南海中央海盆洋壳区,东侧为菲律宾群岛。根据国际地质研究的资料,菲律宾群岛始新世以前位于较偏南的纬度,后来于中晚中新世(距今16~10Ma)仰冲于南海中央海盆之上,因此菲律宾群岛是一个外来群岛。而黄岩岛在马尼拉海沟以西,是中央海盆洋壳区的一个岛礁,与菲律宾群岛成因不同。南海历史性水域线的南段在地形上基本与南沙海槽一致,伴随南沙地块由北部陆缘向南裂离,古南海洋壳沿此海槽以南俯冲至加里曼丹岛陆壳之下,因此南沙地块与加里曼丹陆块为两个来历不同的地块。南海历史性水域线西段的分布在地形上与越东巨型走滑断裂带基本一致,可能与西沙地块、中沙地块、南沙地块从南海北部陆缘向南滑移有关。南沙地块北缘陡直的正断层结构,突显中央海盆是拉裂形成,其基底和中新生代地层与北部珠江口盆地的地层结构可以对比,说明南沙岛礁原属我国华南大陆南缘,后因南海的形成裂离至现今的位置。  相似文献   

20.
The identification of 1) the exact location of the East Pacific Rise (EPR)-Rivera Fracture Zone (RFZ) eastern junction, 165 km west of the Acapulco Trench axis, 2) the absence of a clear Rivera-Cocos Plate boundary between the Acapulco Trench axis and the EPR-RFZ eastern junction and, 3) the Jalisco Block (JB) offshore boundary that connects the Colima Graben (CG) to the Tamayo Fracture Zone (TFZ) northward suggests that the Jalisco Block is being transferred from the North America Plate to the Pacific Plate north, rather than south, of the Tamayo Fracture Zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号