首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
南半球中高纬度区域不同类型云的辐射特性   总被引:1,自引:0,他引:1  
利用CloudSat的2B-CLDCLASS-LIDAR云分类产品和2B-FLXHR-LIDAR辐射产品4 a(2007-2010年)的数据,定量分析了单层云(高云、中云、低云)和3种双层云(如:高云与中云共存、高云与低云共存以及中云与低云共存)在南半球中高纬度(40°-65°S)的云量、云辐射强迫和云辐射加热率。其中云辐射加热率定义为有云时的大气加热率廓线与晴空大气加热率廓线的差值。结果表明:研究区域盛行单层低云和单层中云,其云量分别为44.1%和10.3%。并且,中云重叠低云在双层云中云量也是最大(8.7%)。不同类型云的云量也显著影响着其云辐射强迫。单层低云在大气层顶、地表以及大气中的净云辐射强迫分别是-64.8、-56.5和-8.4 W/m2,其绝对值大于其他类型云。虽然单层的中云在大气层顶和地表的净辐射强迫也为负值,但其在大气中的净云辐射强迫为正值(2.3 W/m2)。最后,讨论了不同类型云对大气中辐射能量垂直分布的影响。所有类型云的短波(或长波)云辐射加热率都随高度升高表现为由负值转为正值(或由正值转为负值)。对于大部分云,其净云辐射加热率主要由长波云辐射加热率决定。这些研究结果旨在为模式中云重叠参数化方案在区域的适用性评估及改进提供观测依据。   相似文献   

2.
应用2006年5月至2013年5月7年的Cloud Sat卫星观测资料,针对青藏高原上空不同高度、不同季节8类云(卷云、高层云、高积云、层云、层积云、积云、雨层云、浓积云)的发生频率,分析研究了青藏高原地区云的水平和垂直分布特征及其物理成因,为数值预报模式对云系模拟能力的评估提供了有效的验证信息。研究表明:青藏高原云的发生频率为35%,其中:低云的频率最大,接近21%;中云次之,频率14%;高云的频率最小。垂直分布上,低云最大频率的高度为5~6 km,中云为7~8 km,高云为11~12 km。水平分布上,高原东南部、西北部云发生频率较高,是高原的两个相对多云中心。低云与总的云频率水平分布基本一致;中云是高原北部、中部频率高,南部低,与低云明显不同;高云主要是夏季在高原南部频率高。从不同季节来看,冬季高原西部的低云频率高;春季高原中北部的中云频率高,西部和东南部的低云频率高;夏季南部的低云和高云频率高;秋季云发生频率都很低。在物理成因上,低云的形成主要是地形抬升作用,中云的形成与高原热力作用相关。  相似文献   

3.
云变化迅速且类型复杂,获取准确的云观测信息具有一定挑战。本文使用2001-2010年期间南部大平原的大气辐射观测实验数据,定量评估了探空和地基主动遥感观测六种类型云(低云、中低云、高中低云、中云、高中云、高云)的一致性和差异。尽管探空和地基观测六类云的云量变化趋势相近,但是针对不同类型云,两者探测结果存在一定差异,其中高云差异最大。两者对中低云、中云和高中云的云底高度的观测吻合较好,对中低云和高云的云顶高度的观测差异较大,对所有类型云的云厚度的观测均吻合较好。  相似文献   

4.
根据江西省气象台站的经验,在多数情况下,低云的目测高度比低云的实测高度要偏高;高、中云则偏低。具体说来如下:Sc<1500米时,平均月测值偏高; >1500米时,平均目测值偏低;Ac<3500米  相似文献   

5.
应用7年(2006年5月18日—2013年5月18日)的CloudSat卫星观测资料,对比分析了青藏高原、东亚季风区、西北太平洋地区云发生频率的特征,并利用欧洲中心再分析资料,计算了三个地区的视热源、视水汽汇Q1、Q2,分析探讨了三个地区与云发生频率相联系的加热机制。结果表明:青藏高原、东亚季风区、西北太平洋地区云的发生频率分别为35%、22%、27%,其中:青藏高原和东亚季风区的低云频率最大,中云次之;西北太平洋地区的高云和低云的频率大,分别为19%和16%。具体云型来看,青藏高原多高层云、雨层云;东亚季风区多高层云和卷云,夏季深对流云频率增大明显;西北太平洋地区多卷云、深对流云和高层云。三个地区视水汽汇Q2的垂直分布特征及季节变化与云发生频率对应较好,青藏高原的低云(雨层云)、中云(高层云)形成过程中,凝结释放潜热,加热大气;东亚季风区低云(深对流云)、中云(高层云)对加热大气贡献大;西北太平洋地区大气的主要加热机制是深对流云形成过程中凝结释放潜热以及湿静能涡旋垂直输送。   相似文献   

6.
陈洪田 《气象》1980,6(11):23-24
西藏高原的云有着不同于平原地区的特征,这是与高原特殊的地理环境及热力、动力条件有关的。本文对高原云的几个特点及成因提出一些粗浅的认识。 一、高云低、低云高、中云少 西藏高原高云的云底高度通常为4000—6000米,有时低于4000米。低云的云底高度,除东南部少数测站外,通常为1000—3000米,大多在2000米左右,有时高于3000米(不包括碎雨云、碎层云)。与同纬度华东沿海一带比较,高云平均低三、四千米,低云要高几  相似文献   

7.
张亚洲 《气象科学》2012,32(3):260-268
利用国际卫星云气候计划提供的月平均云气候资料集,分析了南海及周边地区云量的分布特征,并进一步研究了低云量与南海海温的关系。结果表明:(1)南海及周边地区总云量分布存在显著的季节性差异特征。(2)低云主要分布在南海海区,中云为华南地区,而高云则主要位于靠近赤道区域。(3)低云受海表温度影响较大,而中高云则主要与强对流相对应。低云主要分布于南海海表冷水中心南侧的暖水区内的温度梯度区,其高值区分布与海表温度梯度分布基本一致,海表温度梯度的大小与高值中心的低云量成正比。(4)低云量高值中心位置与水平海温梯度区两侧基本一致,高温暖水受西边界强迫上升在海表层辐合,有利于低云的生成。  相似文献   

8.
我地广泛流传着“云交云,天气不看晴”的农谚。所谓。云交云”,就是指几层云的运动方向不一致。我们在访问中了解到,农谚中所说的“云交云”,主要指低云和中云的移动方向不一致,成交错而行。 低云和中云的运动方向不一致,表明低空(一般表示1,500米上空)和中空(一般表示3,000米上空)气流的运动方向不同。而低空和中空气流方向的不同型式,反  相似文献   

9.
利用思南站1961—2008年的逐日总云量和低云量资料,统计了平均云量、量别日数等基本特征,分析了云量年变化和年际变化特征,结果表明:总云量长期变化呈减少的趋势,低云量长期变化呈增加的趋势,总、低云量在数值上愈来愈接近,中云量正逐渐萎缩。总云量和低云量有明显的年变化,隆冬到初春季节多,仲春到初夏、深秋到初冬季次之,盛夏到初秋季节最少。通过方差分析,云量数据稳定性差,8月低云量和10月总云量最不稳定,同比波动最大。  相似文献   

10.
利用兰州大学半干旱气候与环境观测站2008年全天空成像仪、微脉冲激光雷达和太阳总辐射观测资料,分析了不同时间段内云量的变化特征及其与太阳辐射的关系。结果表明:2008年3~8月总云量经历了先上升后下降的过程,其中3~5月缓慢上升,各月总云量都在8成以上;6~8月显著下降,但各月总云量都大于6成,说明半干旱区春夏季云量充足,属"不缺云"状态;同一时段内,太阳总辐射先"变亮"后"变暗",即3~5月大幅上升,6~8月逐步下降;总云量与太阳总辐射存在显著的负相关关系,相关因子R2=0.68;低云、中云、高云对地面太阳辐射的相对影响值分别为-23.01%、-3.33%和13.09%。  相似文献   

11.
赵彩 《贵州气象》2000,24(4):36-37
使用贵阳、威宁1960~1983、年的云与太阳辐射资料,讨论了云贵高原东侧斜坡地带太阳辐射强度的判别及其原因;并在些基础上根据1963~1983、年贵阳冬委1083个全天层状低云日的一些云宏观特征量昼夜判别的计算,初步估计了太阳辐射对贵州冬季稳定的静止锋地形层云的某些影响。  相似文献   

12.
在云电码编报中 ,从云所反应的天气意义考虑 ,将低云族中的雨层云和堡状、荚状层积云均作 CM云。因此 ,Nh云所编报的云量与地面气象观测记录中的“低云量”有时是不一致的。在实际工作中 ,不少同志 ,甚至不少台站由于理解错误或受错误习惯影响 ,将 Nh的云量误认为“有低云时编报低云量 ,无低云时编报中云量”,只有在定时观测时出现 Ns、 Sc cast、 Sc lent三种云之一 ,并且当时天空中还存在其它低云时才表现出来 ,这是一种理解上的错误。由于实际观测中这种情况出现次数不是很多 ,整个站组往往忽视了这种记录 ,形成整体出错。如 :云量 :1…  相似文献   

13.
利用CFSR资料分析近30年全球云量分布及变化   总被引:4,自引:1,他引:3  
向华  张峰  江静  彭杰  张喜亮  张春艳 《气象》2014,40(5):555-561
在利用MODIS卫星的云产品资料对CFSR(Climate Forecast System Reanalysis)再分析资料云产品质量进行检验评估的基础上,采用CFSR资料对1979—2009年全球总云量及低、中、高云量的平均分布及其随纬度的变化进行了分析;用经验模态分解(EMD)方法分析了近30年全球云量的变化趋势,结果表明:(1)全球近30年平均总云量约为59%,全球总云量及低云量、中云量都有明显的纬向分布特征,全球总云量有3个峰值带和3个低值带。(2)低云量的海陆分布差异较明显,陆地上的低云量明显低于海洋上的,除了两个极圈附近,南半球各纬度的低云量都比北半球相应纬度上的都要多;高云量的高值、低值中心均集中在赤道附近到南、北半球30°之间的中低纬度,并且低值中心主要分布在大洋的东部。(3)总云量的总变化趋势为增长,具体表现为随时间呈现先略减少后大幅增加趋势,其突变点大致在1993年,在1993年之后,总云量显著增多。低云量和高云量均呈现增长趋势,中云量则相反,呈减少趋势。低云量增幅最明显,接近2%,中、高云量则增减幅度较小。  相似文献   

14.
利用CALIPSO激光雷达1km水平分辨率的云层产品,计算了中国及周边地区(0°~55°N,70°~140°E)多层云的出现概率,对不同高度多层云的水平分布及其季节变化特征进行了统计分析。结果表明:多层云的出现概率存在显著的区域差异,青藏高原和蒙古高原出现的概率较低,30°N以南的低纬度地区出现的概率较高;多层云系统中双层云占比最大,并且云层发生概率随着云层数的增多而减小;不同高度双层云和三层云的分布特征类似;多层云出现概率夏季最大,冬季最小,其中夏季双层云中“高云+高云”、“高云+中云”和三层云中“高云+高云+高云”、“高云+高云+中云”的配置在青藏高原主体的出现概率最大,而冬季单层云的低云、双层云中“高云+低云”及三层云中少量的“高云+高云+低云”配置在中国东北部海域、南海北部等30°N以北地区的出现概率高于其它季节。   相似文献   

15.
基于东南沿海地区6个主要代表城市1961—2009年的逐日地面辐射数据和其他气象数据,利用线性回归、多元回归方法,探讨了近半个世纪以来6个城市太阳辐射的变化特征;通过逐步回归、通径分析方法,探讨了导致6个城市太阳辐射变化的主要影响因素。结果表明:福州、广州、汕头、桂林、南宁和杭州6个城市总太阳辐射在1960—1970年代由“亮”变“暗”,开始“变暗”时间分别为1963、1963、1963、1964、1963和1967年;在1980—1990年代由“暗”变“亮”,开始“变亮”的时间分别为1989、1995、1981、1991、1984和1989年。在总太阳辐射“变暗”阶段,福州、广州是低云量占主导因素;汕头、桂林、南宁是能见度占主导因素;杭州是总云量占主导因素。在总太阳辐射“变亮”阶段,福州、杭州是总云量占主导因素;广州是低云量占主导因素;汕头是能见度、日照时数占主导因素;桂林、南宁是日照时数占主导因素。总的来说,我国东南沿海地区太阳辐射变化主要受到低云量、气溶胶、总云量、日照时数的影响。由此看出,我国东南沿海地区各城市之间影响总太阳辐射变化的主体因素是不一样的。   相似文献   

16.
近二十年全球变暖背景下东亚地区云量变化特征分析   总被引:8,自引:0,他引:8  
吴涧  刘佳 《热带气象学报》2011,27(4):551-559
利用ISCCP的D2云气候资料集,采用趋势分析方法得到了东亚地区1984—2006年各种不同种类云量的变化趋势,并重点分析了全球变暖背景下气温与不同云量变化之间的关系。结果表明:近20年东亚地区总云量和高、低云量呈现波动减少趋势,减少量分别为2.24%、1.65%和1.68%,中云量呈增加趋势,增加量为1.07%;且云量变化存在较大的区域差异。温室效应所导致的东亚地区气温改变和水汽含量变化,是导致云量分布变化的重要原因,在青藏高原、孟加拉湾及热带辐合带区域的气温与高云存在显著负相关,与中、低云存在正相关,而在西太平洋、日本以东以北洋面的气温与低云呈显著负相关,与高云呈正相关。  相似文献   

17.
利用2021年3月—2022年2月ERA5再分析数据云量、云水凝物对中国气象局研发的全球数值预报系统CMA-GFS同期云量产品和由云量、云水凝物产品计算的云发生、云水凝物积分的偏差特征进行诊断评估, 初步探讨了CMA-GFS云预报偏差存在的可能原因。结果显示:CMA-GFS云量、云水凝物的分布较为合理, CMA-GFS能够描绘全球云量、云水凝物的分布特征, 并能够反映季节特征;CMA-GFS预报高云和中云的云量偏差大于低云的云量偏差, 而高云和中云的云量均方根误差较低云偏小, 说明模式高云和中云的预报稳定性优于低云;与ERA5再分析数据相比, CMA-GFS液相水凝物积分以负偏差为主, 冰相水凝物积分以正偏差为主;云量、云水凝物的偏差在不同地区成因不同, 在热带地区的偏差与对流参数化和微物理方案不协调有关, 在南北半球中高纬度地区的偏差与相对湿度偏差相关。  相似文献   

18.
基于2021年1月1日-10月31日阳江超级观测站布设的Vaisala CL51激光云高仪和无线电探空对低云、中云、高云3类云的云底高度观测的结果进行对比检验.结果表明:两个仪器观测到的月平均云底高度结果中云的时空一致性较高,低云和高云云高仪分别高估了 0.84和1.15 km,并且低云云底高度随月份变化两个仪器呈相反趋势;云高仪在无降水时探测能力最好,随降水增加对中、高云云底高度高估程度也随之增加,日累计降水量级超过25 mm时探测能力迅速减弱;低层高湿条件下,云高仪测得的平均云底高度为1.792 km,可能为高湿度层顶;剔除低层高湿样本后,无降水时RMSE从1.3下降到1.24,归一化偏差从0.56下降到0.52;对于仅有云高仪观测到云的样本,云高仪误将湿区顶判断成云底以及探空计算云底算法阈值选取所致.  相似文献   

19.
利用南宁市太阳辐射站1986~2011年的太阳总辐射、日照时数资料,分析南宁市太阳总辐射的气候变化特征.另外,利用南宁站同期的低云量、地温等要素,计算这些要素与太阳辐射的相关系数,采用最小二乘法拟合出各月的线性关系,分析其对太阳总辐射的影响.  相似文献   

20.
紫外线指数及其预报技术介绍   总被引:4,自引:0,他引:4  
对南宁市7a来的紫外线辐射强度与太阳辐射总量,总云量,低云量的关系进行统计分析,建立了紫外结指数与太阳辐射总量之间的气候平均值对应关系,在此基础上,制作南宁市24h的紫外线指数预报,并根据预报结果提醒人们采取相在的防护措施,服务于社会公众。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号