首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
苏南5市区雷暴预报方法的研究   总被引:1,自引:1,他引:0       下载免费PDF全文
对2001-2010年4-9月苏南5市区雷暴天气的对流参数进行了分析、研究.经过对对流参数箱线图统计、计算点双序列相关系数、值域多次分级试验和级间整合调整等优化处理后,最终选取大气可降水量、杰弗逊指数、肖沃特指数、全总指数、风暴强度指数、抬升凝结高度层温度、上下层温差共7个对流参数作为预报因子,建立苏南5市区雷暴的双级逻辑预报方程.利用预报方程,对2001-2009年4-9月的8230个样本进行拟合结果分析:临界成功指数的平均值为61.0%;对2010年4-9月的样本进行试报,苏南5市区7、8月份的临界成功指数分别为75.0%和66.7%,预报效果较好.  相似文献   

2.
王毅  张晓美  盛杰  杨吉 《气象科学》2020,40(2):241-248
利用2009—2015年江淮夏季雷暴大风观测资料和NCEP再分析资料,按整层可降水量将雷暴大风环境划分为干、湿两种环境,结果发现湿环境雷暴大风日约占总雷暴大风日数的86%。基于物理量参数和Logistic回归方法构建了江淮夏季干、湿环境下区域雷暴大风的潜势预报模型。西南区、东南区和北区湿环境雷暴大风的最显著预报因子分别是冰雹指数(CS)、K指数和沙氏指数(SI)。干环境雷暴大风的最显著预报因子是总指数(TT)。相对于大风指数(WINDEX),综合考虑热力学作用和高空水平动量信息的新大风指数(GUSTEX)对江淮干、湿环境雷暴大风的预报指示意义更好。通过历史样本回报确立了预报模型的概率阈值,并利用2016年独立样本试预报检验证明Logistic模型预报效果良好。  相似文献   

3.
通过对2006年6~9月(雨季)大量雷暴对流参数进行计算,选取离西昌发射场最近的单点同化资料。利用相关系数法选取相关性好且稳定的预报因子,进行事件概率回归,得到雷暴预报方程。并对2007年雨季西昌雷暴进行预报,取得了较好的效果。分析表明,基于对流参数的雷暴预报方法对场区雷暴的预报具有明显的效果。   相似文献   

4.
正1引言雷暴一般是指伴有雷击和闪电的局地对流性天气,俞小鼎等[1]通过主观临近预报和客观算法讨论了雷暴生成、发展和衰减预报技术;有很多学者基于大量的对流因子,选择各种不同的对流参数组合方案,建立了适合当地的雷暴潜势预报方程,刘宸钊等[2-3]结合对流参数,利用相关系数法选取相关性好且稳定的预报因子,进行事件概率回归,得到雷暴预报方程。郝莹等[4]利用T213资料计算和选取与雷暴相关  相似文献   

5.
基于NCEP/GFS资料的中国东部地区雷暴预报研究   总被引:2,自引:1,他引:1  
基于来自美国国家环境预测中心(NCEP)的GFS(Global Forecasting System)分析及预报场资料,将多个能够表征雷暴发生动力、热力环境的对流因子作为预报因子,通过费希尔判别准则及逐个引入因子法,建立集合多个对流参数的雷暴预报模型,从而进行较长时效(12—24 h)的区域性雷暴预报。依据临界成功指数(CSI)最高的原则,建立最优预报模型,不同地区所选用的对流参数不同,雷暴模型预报雷暴发生与否的临界值也不同,从而不仅能够得到较好的集合多个对流参数的雷暴区域性预报,还能充分考虑不同地区雷暴发生的地域性特点和气候背景。将建立的预报方法应用于2012年6和9月的两次强对流过程的预报,发现雷暴预报模型较好地预报出两次过程的雷暴落区。进一步,为了能够在强天气预报中客观有效地区分出雷暴与暴雨区,引入集合动力因子暴雨预报方法。集合动力因子暴雨预报方法在诊断和追踪强降水的发展演变中表现凸出,而集合对流参数雷暴预报方法则对包含短时强降水、冰雹、大风等在内的对流性天气有较好反映,综合两套预报方法各自的优势,建立了集成动力因子-对流参数强天气预报方法,用于降水和雷暴的预报,同时对雷暴加降水型、雷暴无降水型、降水无雷暴型等强天气进行区分预报。对中国多个典型城市的预报效果分析发现,该方法不仅能够较好地预报出较长时效(24 h)的雷暴和降水落区,对区分降水雷暴、无降水雷暴和无雷暴降水也表现出一定的能力。  相似文献   

6.
周方媛  戴建华  陈雷 《气象科技》2020,48(2):229-241
通过对上海地区1998—2009年4—9月各类强对流天气的统计分析,选取42个对流参数及其时间变量,采用逐步回归方法建立了针对各类强对流天气的0~12h潜势预报方程。在此基础上,提出了基于关键对流参数进行分级的强对流潜势预报方法,选取K指数、SI指数、PWV(大气可降水含量)指数和θsedif85(500hPa和850hPa假相当位温差)等反映大气热力和水汽条件的关键对流参数,根据对流分布情况将各对流参数分别分为3个等级,并分级建立了针对不同强对流天气的潜势预报方程。与未分级方程对比表明:基于关键对流参数分级的预报方程对雷雨大风、强雷电和所有对流等预报效果上有明显提升,采用如下组合评分更佳:雷雨大风的预报采用SI分类方程,强雷电和所有对流采用PWV分类方程。将基于关键对流参数分级的强对流潜势预报方法在数值预报模式中进行了业务应用,取得了较好效果。  相似文献   

7.
为提高镇海地区雷暴预报准确率,利用2009—2013年6—8月杭州、台州、衢州及上海站的探空资料选取有利雷暴发生的对流参数,如K指数、SI指数、LI指数等18个与雷暴发生、发展相关的物理量,通过分析发现杭州站与镇海地区雷暴发生的相关性最高,选取该站6个与雷暴发生相关性较好的参数,分析确立其阈值,运用多参数加权的权重法建立雷暴潜势预报模型。利用该模型在2014年6—8月进行雷暴预报检验,结果总准确率为78.7%,空报率为16.9%,漏报率为4.4%。同时将中尺度数值预报模式WRF同雷暴潜势预报相结合,通过计算各网格点上的雷暴潜势,制作雷暴落区预报,结果对于雷暴落区及强度的预报有较大的参考作用。  相似文献   

8.
动力-统计方法在24小时雷暴预报的应用   总被引:4,自引:1,他引:3  
曾淑玲  巩崇水  赵中军  李旭  周甘霖  王式功  尚可政 《气象》2012,38(12):1508-1514
利用T213数值预报产品,计算了多个对流参数,应用事件概率回归方法分别建立了全国690个基本站4-9月的24h雷暴潜势预报方程,并根据TS评分值最大的原则确定了雷暴发生预报的临界概率,针对2010年4-9月进行试预报。研究结果表明:(1)基于T213输出产品计算得到的对流参数物理意义明确,与雷暴有无事件相关系数较高,对雷暴潜势预报方程贡献很大。(2)雷暴潜势预报方程对区域性雷暴的预报指示性较强,尤其对于雷电频发的地区效果更好。(3)690个站TS评分平均值为0.24。  相似文献   

9.
利用太原市7个国家观测站实况、探空以及MICAPS等资料,对1998—2018年5—9月太原的雷暴大风进行天气学分型,选取雷暴大风的消空因子以及不同天气型下的预报因子并确定其阈值,利用指标叠套法,建立雷暴大风潜势预报方法,并进行预报检验。结果表明:(1)选取700 hPa温度露点差、850 hPa与500 hPa的温差、条件性稳定度指数和混合相层4个环境参数作为消空因子并确定了消空阈值。(2)将雷暴大风分为高空槽型、冷涡型、切变线型、西北气流型和副高边缘型5类,选取了5类天气型下雷暴大风的预报因子,利用指标叠套法,建立了太原雷暴大风潜势预报方法。(3)运用雷暴大风潜势预报方法开展历史样本回报检验和2019-2020年试预报检验,取得了较好的预报效果。  相似文献   

10.
选取2016—2018年每年4—9月份RPG-HATPRO型42通道微波辐射计观测的不稳定指数参数(K、SI、CAPE、LI)及水汽参数(IWV、LWP),研究得出各参数触发雷雨大风、短时强降水的阈值条件为K>37℃、SI<-1℃、IWV>60 kg/m~2、LWP>400 g/m~2,而LI、CAPE无法对3种天气类型进行区分。利用费舍判别分析方法,将不稳定指数参数及水汽参数作为预报因子,建立预报方程并进行检验,结果表明:二级判别方程预测对流天气的准确率为76%,可以作为预报对流天气的辅助工具;多级判别方程不能很好地区分3种天气类型,但将其作为修正后的二级判别方程使用,能提高对流天气的测中概率。  相似文献   

11.
传统的推荐系统主要针对单个用户,但随着社会和电子商务的快速发展,人们越来越多地以多个用户的形式一起参与活动,而群组推荐旨在为多个用户组成的群组提供服务,已成为当前研究的热点之一.针对目前群组推荐准确率低,群组成员之间偏好冲突难以融合的问题,本文提出了一种新的共识模型策略,融合了群组领袖影响因子和项目热度影响因子,基于K近邻为目标群组寻找邻居群组,借鉴邻居群组的偏好,设计了基于偏好融合的群组推荐算法.在MovieLens数据集上的实验结果表明,本文所提的融合策略较传统的偏好融合策略有着更优越的表现,推荐准确率(nDCG)的总体平均性能约提高13%,推荐列表多样性指标的总体平均性能约提高10%.  相似文献   

12.
介绍了一种针对DBF(自适应数字波束形成)的最小均方(LMS)自适应处理方法,并在工程上用 FPGA(现场可编程门阵列)实现算法的验证和调试.该算法比较简单,易于在工程上用硬件来实现.  相似文献   

13.
多普勒激光雷达在大气、环境以及风能等领域得到越来越广泛的应用,但对于复杂天气下多普勒激光雷达的适用性仍然有待深入研究。为此本研究采用2020年8—10月期间位于福建三沙的地基多普勒激光雷达与边界层高塔所搭载的超声风温仪观测的风场数据进行对比,发现多普勒激光雷达在水平风速、风向方面具有稳定的高精度探测性能,与超声风温仪之间相关系数达到了0.948和0.984。相比之下,激光雷达垂直风速的探测误差较大,与超声风温仪之间相关系数仅有0.353。研究发现,降雨强度与激光雷达垂直风速误差呈正相关关系,强降雨下垂直风速偏差最大可达到9 m/s。  相似文献   

14.
利用NCEP再分析资料和常规气象观测资料,分析了2006年1月18-19日发生在河南省的一次暴雪过程,结果表明,这次暴雪过程中存在干侵入现象。干侵入的发生发展对暴雪过程具有重要作用:干侵入沿相当位温密集带向下向北传播,引起对流层低层气旋性涡度发展,增强辐合上升运动,导致降水的增强;高层干冷空气向下注入,引起温度场扰动,在对流层中低层形成逆温层,有利于暴雪天气的发生;高空急流入口区北侧的下沉运动为对流层高层干空气和高位涡的下传提供了动力条件。  相似文献   

15.
水体对气温观测影响的试验分析   总被引:2,自引:0,他引:2  
2011年项目组设计了浙江省大型水体观测试验方案,选择较大水体,在其上、下风方向特定距离处布设自动气象站,同步观测各站气温,研究气温受水体影响的量化规律。结果表明,水体对周边陆地有白天降温、夜间增温效应,且离水体越近,这种效应越明显;夜间升温效应比白天降温效应显著,3—5月白天降温效应比1—2月明显;在一天中正午的降温影响最大;2km2的水域对下风向100m范围内温度观测有明显影响,100m以远影响不明显。该研究对量化水体影响的范围和量值进行了有益的探索,为气象站科学选址提供了依据。  相似文献   

16.
基于激光雷达资料的气溶胶辐射效应研究   总被引:2,自引:0,他引:2  
利用新型激光雷达气溶胶探测资料及综合数值模式,以地形复杂的兰州市及周边地区冬季典型天气形势下的大气边界层为研究对象,通过理想试验模拟研究了城市气溶胶辐射效应与大气边界层的相互作用。结果表明:夜间,低空(50~600 m)气溶胶所在气层冷却效应明显,温度降低0.13~0.18℃,600 m高度以上,气溶胶浓度较低,其冷却效应较小,温度降低不足0.1℃;白天,受气溶胶短波辐射效应影响,边界层内增温明显,增温最大值位于低层脱地逆温层顶300 m高度附近,600 m以上由于气溶胶浓度减小,加热率亦降低,增温由0.2℃减至0.1℃。此外,气溶胶的存在使得所在层的风速降低。可见,激光雷达探测资料在边界层模式中有很好的应用价值,对于研究气溶胶辐射效应的大气边界层响应有重要意义。  相似文献   

17.
针对人脸识别技术中存在的高维问题、小样本问题和非线性问题展开研究.围绕人脸特征提取,采用基于主成分分析和Fisher线性鉴别来克服在人脸识别中的小样本问题,同时将人脸图像从高维空间映射到低维空间从而解决了高维问题;在分类识别方面,采用具有很强的非线性映射功能的RBF神经网络进行模式分类,能够解决人脸识别中的非线性问题.在ORL人脸数据库上进行的仿真实验表明,该方法进行人脸识别具有较高的识别率.  相似文献   

18.
印度应对气候变化国家方案简析   总被引:2,自引:0,他引:2       下载免费PDF全文
2008年6月印度政府发布了《气候变化国家行动方案》,阐明了印度应对气候变化的原则立场以及减缓和适应措施。方案中明确指出发展中国家是气候变化的最大受害者,发达国家应该承担温室气体减排的责任和义务;由于近年印度排放不断上升,方案也着重提出了提高能效、大力发展可再生能源等措施。与我国发布的《中国应对气候变化国家方案》进行对比,印度国家行动方案中的一些观点和措施值得我国研究和借鉴,该方案为我国进一步提出应对策略、加强国际合作提供了参考。  相似文献   

19.
研究基于ERP库存管理系统实施评价指标权重的层次分析法与其信息的模糊处理,建立库存管理系统模糊综合评价的数学模型,并通过应用实例验证层次分析法与模糊综合评价相结合的库存系统实施评价方法的合理性和可靠性.  相似文献   

20.
基于支持向量机的雷暴潜势预报初探   总被引:1,自引:0,他引:1       下载免费PDF全文
根据2008—2010年夏季邵阳地区的NCEP全球再分析资料(分辨率为1°×1°)和闪电定位资料,利用支持向量机(SVM)分类方法建立该地区雷暴潜势预报模型,并用测试样本检验了该模型的预报能力,同时与Logistic回归模型和Bayes判别法的预报效果进行了比较。结果表明,SVM模型的预报准确率为86.21%,虚警率为15.25%,漏报率为13.79%。对比三种模型的TSS技术评分,发现使用SVM方法建立的模型对邵阳地区雷暴预报的效果最好,评分值为0.79。因此,SVM方法所建立的模型可以为邵阳地区6 h的雷暴潜势预报提供一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号