首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
西南低涡与不同系统相互作用形成暴雨的异同特征分析   总被引:1,自引:0,他引:1  
利用1°×1°NCEP再分析资料和地面加密自动站资料,通过对2007年四川盆地盛夏3次西南低涡与不同系统相互作用时形成四川盆地暴雨过程的环流特征、影响系统以及风暴相对螺旋度、湿位涡、水汽通量等物理量场特征进行对比分析,找出西南低涡与不同系统相互作用形成暴雨过程中各物理量的异同点。分析表明,西南低涡与不同系统相互作用形成暴雨机制的共同点是:暴雨发生在西南低涡中心附近,西南低涡暴雨区内存在着稳定的上升气流和水汽辐合,伴有明显的能量释放特征,西南低涡暴雨都是发生在对流层中层螺旋度大值区,强降水一般出现在对流层低层MPV1〈0同时MPV2≥0的范围内,都具有“低层正涡度辐合,高层负涡度辐散”的典型暴雨动力结构。西南低涡与不同系统相互作用形成暴雨机制的不同点是:在西南低涡与高原低涡形成暴雨机制中高空急流的作用十分重要,在西南低涡与切变线形成暴雨机制中低空急流的动力作用十分明显,而深厚的西南低涡暴雨高低空急流作用不是十分重要。在西南低涡与切变线或深厚的西南低涡形成暴雨机制中锋面抬升作用明显,对流层高层MPV1正值区叠加在低层MPV1负值中心上,而与高原低涡相配合形成暴雨机制中锋面抬升作用不明显,不具有MPV1下负上正的结构。深厚的西南低涡暴雨是非移动的,而西南低涡与高原低涡或切变线形成的暴雨是移动性的。  相似文献   

2.
西南低涡与不同系统相互作用形成暴雨的异同特征分析   总被引:1,自引:0,他引:1  
利用1°×1°NCEP再分析资料和地面加密自动站资料,通过对2007年四川盆地盛夏3次西南低涡与不同系统相互作用时形成四川盆地暴雨过程的环流特征、影响系统以及风暴相对螺旋度、湿位涡、水汽通量等物理量场特征进行对比分析,找出西南低涡与不同系统相互作用形成暴雨过程中各物理量的异同点。分析表明,西南低涡与不同系统相互作用形成暴雨机制的共同点是:暴雨发生在西南低涡中心附近,西南低涡暴雨区内存在着稳定的上升气流和水汽辐合,伴有明显的能量释放特征,西南低涡暴雨都是发生在对流层中层螺旋度大值区,强降水一般出现在对流层低层MPV1<0同时MPV2≧0的范围内,都具有“低层正涡度辐合,高层负涡度辐散”的典型暴雨动力结构。西南低涡与不同系统相互作用形成暴雨机制的不同点是:在西南低涡与高原低涡形成暴雨机制中高空急流的作用十分重要,在西南低涡与切变线形成暴雨机制中低空急流的动力作用十分明显,而深厚的西南低涡暴雨高低空急流作用不是十分重要。在西南低涡与切变线或深厚的西南低涡形成暴雨机制中锋面抬升作用明显,对流层高层MPV1正值区叠加在低层MPV1负值中心上,而与高原低涡相配合形成暴雨机制中锋面抬升作用不明显,不具有MPV1下负上正的结构。深厚的西南低涡暴雨是非移动的,而西南低涡与高原低涡或切变线形成的暴雨是移动性的。   相似文献   

3.
利用常规观测资料、NCEP再分析资料、卫星以及雷达资料对2015年8月16—18日影响川渝地区的一次持续性大暴雨过程进行了分析。结果表明:在亚洲中高纬和低纬相对稳定的环流背景下,两次高原涡东移、两次冷空气南下侵入四川盆地共同促进了西南低涡生成发展,造成此次大暴雨过程。西南低涡"初生形成"阶段,地面热低压东北侧有冷锋侵入,中心偏北形成暖锋,低涡近于正压;"稳定持续发展"阶段,冷锋南段移至地面热低压南侧,北段与暖锋结合形成准静止锋,低涡斜压性明显且呈近圆形,持续性暴雨主要出现在西南低涡的暖切变线附近和冷槽东侧;"东移变形减弱"阶段,冷空气第二次侵入,冷锋持续增强,西南低涡东移变形减弱。低层辐合、高层辐散、充沛的水汽输送以及不稳定能量的累积为西南低涡的加深、发展和强降水的维持提供了重要条件。西南低涡暖切变线和南侧冷槽附近发展起来的对流云团是暴雨产生的直接原因,强降水主要发生在云团上风方TBB梯度相对较大的区域。此次强降水过程的局地环流有低空急流和低空辐合线或切变线配合,雷达体积速度处理(velocity volume processing,VVP)法反演的风矢图可更直观地判断风向风速、天气系统所处的发展阶段以及判识辐合线或切变线,低空辐合线或切变线的演变以及低空急流的强度和移向对强降水天气产生的动力条件、维持时间和回波外推预报具有重要的指导意义。  相似文献   

4.
MCC转为带状MCSs过程中水平涡度的变化与暴雨的关系   总被引:4,自引:0,他引:4  
利用实况资料和WRF中尺度数值模式对2010年6月18—19日的一次MCC转带状MCSs的暴雨过程进行数值模拟与诊断分析。结果表明:850 hPa西南涡和切变线的形成与维持是影响此次暴雨产生的中尺度系统,前期MCC的形成到成熟以低涡降水为主,后期的圆形MCC转为带状MCSs主要为切变线降水。在雨区附近,u、v的垂直切变所形成的强水平涡度造成的旋转,对应垂直环流的上升支可触发暴雨产生,垂直方向上u、v不同的分布可形成不同的垂直环流。低涡与切变线附近的水平涡度有明显差异,这种差异导致暴雨形成的原因不同,低涡暴雨主要由v的垂直切变造成,切变线暴雨主要由u、v的垂直切变共同作用,本次过程中v的垂直切变构成了沿切变线的东西向雨带,u的垂直切变沿纬向的不均匀性引起的垂直运动与切变线上MCSs的生成、发展和多雨团的形成关系密切。低涡、切变线降水中心附近的正倾侧项(水平涡度向垂直正涡度转换)也有类似的差异,低涡的转换主要由?v/?p<0决定,切变线的转换主要由-?u/?p>0决定。水平涡度向垂直涡度的转换尺度较小,易在平均状态下被忽略。倾侧项主要有利于暴雨的加强,但对西南涡、切变线的发展贡献较小。   相似文献   

5.
王安林  何春燕  冯晓芬 《贵州气象》2007,31(4):22-23,30
利用实测资料采用天气学方法和数值预报产品,对2002-06-17 T 20—20 T 20贵州省出现的一次连续性暴雨—大暴雨过程进行了分析,结果表明:贵州连续性暴雨过程是在大尺度环流系统异常稳定的条件下,高原槽、西南低涡、中低层切变线和地面辐合等天气系统相互作用及适当配置的结果,贵州暴雨常出现在低空急流的左侧,西南低涡稳定维持并沿切变线移出时,易造成贵州持续性的暴雨—大暴雨天气,T 213和EC的数值预报产品对预报员有很好的指导作用。  相似文献   

6.
贵州西部两场典型暴雨个例对比分析   总被引:3,自引:1,他引:2  
利用ECWMF数值预报产品资料、逐日客观分析资料、常规观测资料以及高密度区域气象自动站降水资料和物理量资料,对2011年6月中、下旬发生在贵州西部地区的两场暴雨天气过程进行对比分析。结果表明:①两场暴雨的发生,中低层均有西南低涡沿切变线东南移和强盛的西南暖湿气流,第1场有高原槽,第2场既有高原槽又有南支槽等天气条件的有效合理配置,以及较强的垂直上升运动和充足的水汽、能量条件,为暴雨产生提供充分的条件。②区域气象自动站降水资料显示,中小尺度天气系统演变对强降水落区有很好的指示意义。③WRF模式较准确地模拟出降水落区、强度以及700 hPa上西南涡沿切变线移动趋势,对类似暴雨短时临近预报具有重要的指示意义。  相似文献   

7.
利用常规观测资料、FY-2E卫星云顶黑体亮度温度(TBB)资料、欧洲中心0. 25°×0. 25°资料,选取质量散度、垂直螺旋度、质量垂直螺旋度、水汽垂直螺旋度、散度垂直通量、密度散度垂直通量、水汽散度通量等7个动力因子对2015年8月16-18日四川盆地一次暴雨过程进行诊断分析。结果表明:(1)此次降雨过程是由高原低涡、高原切变线、西南低涡等多个天气系统共同作用造成。(2)随着高原低值系统的东移、减弱,西南低涡的生成、发展,伴随的对流云团经历了连续生消的过程。(3)动力因子对此次暴雨过程的发展和演变有较好指示意义。动力因子大值区基本覆盖强降水区。西南低涡形成初期,动力因子大值区和高原切变线分布一致,降雨中心位于动力因子大值区和高原切变线右侧,与西南低涡中心对应。西南低涡强盛时期,动力因子大值中心、西南低涡中心、降雨中心趋于重合。降雨区上空存在质量散度辐合、气旋性涡度和水汽通量涡度的垂直向上输送及辐合上升运动。  相似文献   

8.
切变线暴雨过程中湿位涡的中尺度时空特征   总被引:5,自引:0,他引:5  
吴君  汤剑平  邰庆国  石莹  裴洪芹 《气象》2007,33(10):45-51
利用中尺度数值预报模式MM5V3.6,对2005年9月19—21日发生在山东中南部的区域性切变线暴雨天气过程进行了数值模拟。并用高时空分辨率的模式输出资料,对此次暴雨过程的湿位涡场特征进行了诊断分析。结果表明:θse面陡立易导致湿斜压涡度的发展,形成θse陡峭密集区,密集区内容易发生暴雨。通过湿位涡的分析,揭示了暴雨过程中湿位涡的中尺度演变特征和空间结构,表明切变线暴雨的发生发展与湿位涡的时空演变有很好的联系。暴雨主要出现在850hPa的ζMPV1负值区和ζMPV2正值区等值线密集区附近,降水中心位于ζMPV1负值中心前部对流不稳定区中。  相似文献   

9.
主要回顾了近5年成都高原所围绕高原天气研究中的高原天气系统(包括高原涡、西南涡、高原切变线)活动,特别是东移出高原后的高原低涡活动,低涡暴雨机理以及西南涡加密观测资料在天气预报与分析中的应用等方面的研究成果,在此基础上指出研究存在的不足,如多尺度天气系统相互作用研究不多,高原天气系统的发展维持机理、加密观测资料的应用等还有待深入,以此推动高原天气研究向深入开展。  相似文献   

10.
珠三角一次暖区强降水过程湿位涡的演变特征   总被引:4,自引:0,他引:4  
首先利用常规资料分析了2008年6月13日发生在珠江三角洲地区的一次暖区强降水的天气背景,再借助于高时空分辨率的WRF中尺度数值模拟结果,对等压面湿位涡在强降水过程中的演变进行了诊断分析,结果表明:暴雨出现在高层高值MPV1和低层低值MPV1、低层高值MPV2的配置区,本次暴雨高层高值MPV1扰动来自西北和西南方向,低...  相似文献   

11.
一、暴雨过程的天气系统1969年7月11日08时700毫巴图上在江淮之间有一条切变线,在切变线的西端四川盆地有一个西南低涡,11日20时西南低涡东移到宜昌,低涡南侧的西南气流增强,西南急流明显,大于20米/秒的风速中心轴线自芷江经汉口到上海,预示着低涡将东移,12日08时低涡中心移到蚌埠,相应地面图在江淮之间有气旋波产生,造成一次暴雨天气过程。从天气系统来看,这次暴雨是由于西南低涡沿切变线东移所造成。  相似文献   

12.
2018年8月1~2日四川盆地西部出现了一次区域性暖区暴雨,利用常规气象观测、区域自动站、卫星云图和雷达产品等资料,分析了其环流背景、中尺度条件以及触发机制。结果表明:东移的高原低涡触发了暴雨天气,通过诱发使低层涡度增加,形成气旋性低涡中心,高原低涡与西南低涡耦合,加强了盆地西部的垂直上升运动;低层水汽和不稳定能量在迎风坡被强迫抬升,触发对流性降水,使降水增幅,造成盆地西南部降水强度大于西北部;高湿环境、深厚暖云,以及中等偏强且呈狭长的CAPE特征,形成了高降水效率;强降水时段与云团发展强盛时段对应,辐合风场以及逆风区的形成有利于强回波的长时间维持。  相似文献   

13.
在引发中国东部夏季降水的天气系统中,高原低值系统扮演着十分重要的角色,其中高原低涡与高原切变线对强降水的协同作用是高原天气影响的一种常见样式,预报员将其称为低涡切变暴雨。本文回顾了高原低涡、切变线及其暴雨的研究历史和当前研究所取得的最新成果,重点探讨了人工智能应用、诊断计算、动力理论以及数值模式等多方法研究高原切变线与高原低涡的关系、相互作用过程以及诱发暴雨机理等科学问题,并基于低涡、切变线暴雨的最新研究成果和相关理论方法、技术手段的发展应用趋势,提出这一研究领域值得关注的一些新方向。由于目前对这两类几何形状迥异但物理属性相近的高原低值天气系统关系的认知仍存较大分歧,两者相互作用进而引发高影响天气过程的物理机理尚不十分清楚,高原低涡、切变线气候学统计结果的差异还相当明显。因此,对这一研究领域的深入探索与交叉拓展,不仅对推动青藏高原天气、气候影响的理论发展有重要科学意义,对高原及下游灾害性天气、气候业务能力的提升亦有较大应用推广价值。  相似文献   

14.
利用中国气象局MICAPS系统历史天气图、云南125个站点逐日气象观测资料、欧洲中心ERA Interim资料,对1991-2018年夏季高原低涡切变造成云南大雨暴雨过程的气候特征进行了统计分析,结果表明:(1)夏季高原低涡切变影响云南,大雨暴雨平均每年出现12次,出现次数整体呈减少趋势,具有明显的年际变化特征;1998年出现最多达25次,2010年最少。高原低涡切变影响云南最多的是6月,平均为5次,其次是7月。(2)高原低涡切变可以造成云南全省性的大雨以上降水过程,从影响区域来看,主要分布在滇西北、滇西、滇中及以东地区,滇西北的东部是多发区,最多位于丽江东部至昆明,以及哀牢山附近;(3)产生全省性暴雨过程的合成特征主要是西太平洋副热带高压(以下简称西太副高)强度较弱,滇缅之间维持弱脊区,高原低涡切变容易从四川西北部边缘南移影响云南,受高原低涡切变影响云南出现暴雨的水汽主要来自孟加拉湾和部分来自高原,两支水汽在云南汇合,为暴雨的产生提供充足水汽。(4)2014年8月初的全省性大雨的天气系统主要是高原低涡切变与700 hPa切变线共同影响造成;中低层的正螺旋度远大于高层的负螺旋度,说明中...  相似文献   

15.
1998年长江上游致洪暴雨的分析研究   总被引:19,自引:2,他引:19  
利用常规资料、HLAFS格点资料、GMS云图等资料,对形成1998年长江上游8次洪峰的有关强降雨天气过程的影响天气系统,暴雨形成的物理机制以及中低纬度天气系统之间的相互作用和影响进行了初步分析和诊断。结果表明,多次强暴雨过程发生在欧亚中高纬度双阻型或中阻型、中低纬度强越赤道气流、异常活跃的西南季风大尺度环流背景下;生成在青藏高原东部在四川盆地发展的低涡及与其相连的切变线是Bao雨产生的主要的天气系统;Bao雨的加强与中低纬度系统相互作用,高原涡的特殊结构密切相关。  相似文献   

16.
一次四川盆地低涡型特大暴雨过程分析   总被引:3,自引:0,他引:3  
利用NCEP 1°×1°再分析资料和地面加密自动站、实况探空资料及FY-2E的TBB资料,分析2013年6月29日至7月2日四川盆地特大暴雨过程持续时间久、强度强的原因。结果表明:(1)本次盆地暴雨属于低涡型暴雨过程,高原低涡和西南低涡是这次持续性特大暴雨过程的直接影响系统,有利的环流场引导高原低涡及西南低涡东移并形成阻塞,使其稳定在盆地;(2)西南急流的建立及维持为降水区提供了大量的水汽和不稳定能量,并使得中尺度系统得以维持和发展;(3)强烈的高空辐散以及高原低涡和西南低涡共同作用,使得盆地低层正涡度维持并形成上升气流柱,这是强降水发展维持的重要条件;(4)盆地低涡的持续维持诱发了中小尺度云团稳定加强,遂宁站的小时雨强与其对应TBB低值有很好的对应关系;(5)从乐至附近不断产生的强回波单体发展并向东北方向移动,在遂宁一带形成强回波带,形成的类似"列车效应"是造成遂宁地区产生特大暴雨的主要原因。并且强回波带中中气旋的长时间存在意味着对流系统不会很快消弱。  相似文献   

17.
利用WRF模式、NCEP 1°×1°再分析资料、常规观测资料对2013年6月29日至7月2日四川盆地的一次暴雨过程进行数值模拟和诊断分析。结果表明,此次暴雨过程是由高原低涡和西南低涡共同作用引起,西太平洋副热带高压(下称西太副高)西伸稳定在四川盆地,形成阻塞作用,导致高原低涡和西南低涡停滞不前。WRF模式能较好地模拟出降水的影响系统、降水落区以及强度。θe分析表明暴雨区位于高温高湿区内,暴雨区低层为对流不稳定区,中高层θe线密集且等θe面陡立,随着降雨的发生,对流不稳定能量释放,θe有所减弱。运用对流涡度矢量(CVV)和湿涡度矢量(MVV)对暴雨过程进行诊断分析后得出:CVV和MVV垂直分量的垂直积分及水平分布的正值带走向与暴雨落区相一致,且其大值中心与降水中心也有较好的对应。CVV和MVV垂直分量大值区的分布和发展与暴雨区的移动和发展较为一致,暴雨区从低层到高层一致的正值分布对暴雨发展具有指示意义。CVV和MVV垂直分量可以很好地指示四川盆地暴雨系统的发展和演变。  相似文献   

18.
利用常规气象观测资料、NCEP1°×1°的6h分析资料和FY-2C卫星云顶亮温资料,对2008年6月14—15日陕西出现的一次区域性暴雨天气过程诊断分析,结果表明:初夏副高西伸并维持,高原西风带长波槽稳定维持,槽前正涡度平流引导低层西南涡、切变加强东移成为此次暴雨天气影响系统;三股气流在暴雨区汇合,强烈而持续的上升运动将能量输送到高层.有利于暴雨的维持;FY-2C卫星云顶亮温小于-32℃区的演变与MCSs生消有很好的对应关系。  相似文献   

19.
高原涡诱生西南涡特大暴雨成因的个例研究   总被引:25,自引:6,他引:19       下载免费PDF全文
赵玉春  王叶红 《高原气象》2010,29(4):819-831
利用多途径探测与再分析资料,通过诊断分析、数值模拟和敏感性试验,对2008年7月20~21日一次高原涡东移诱生西南涡并引发川中特大暴雨的天气过程进行了初步分析,探讨了西南涡特大暴雨发生的中尺度环境场特征,特殊地形和非绝热物理过程在高原涡东移诱生西南涡特大暴雨中的作用。结果表明,高原涡形成后沿高原东北侧下滑,在四川盆地诱生出西南涡,川中特大暴雨在西南涡形成过程中由强中尺度对流系统(MCSs)的活动造成。高原涡东移诱生的低层偏东气流在川西高原东侧地形的动力强迫抬升作用下,释放对流有效位能激发出MCSs产生强降水,降水凝结潜热加热反馈驱动西南涡快速发展。地形的动力作用仅能形成浅薄的西南涡,降水凝结潜热的加入才能使西南涡充分发展。高原涡的发展主要受地面热通量影响,它的发展与否在很大程度上决定西南涡能否形成。盆地周边高大山脉对西南涡的位置分别有不同程度的影响,而盆地周边高大山脉上叠加的中小尺度地形对西南涡和暴雨带的整体位置影响不大,在一定程度上影响暴雨的落区。  相似文献   

20.
集合敏感性方法在高原涡和西南涡引发暴雨过程中的应用   总被引:1,自引:0,他引:1  
基于欧洲中期天气预报中心ECMWF的集合预报和美国国家环境预报中心NCEP再分析等资料对2013年6月30日一次高原涡和西南涡作用下的四川盆地暴雨过程进行了分析。结果表明:(1)高原涡东移并和西南涡耦合加强导致了持续性暴雨的形成,集合预报的高原涡和西南涡之间的动力特征量(位势高度和涡度)的相关系数随时间逐步增大,表明两个低涡呈现出逐步耦合加强的特征;(2)集合敏感性分析可以用来揭示降水预报对于天气系统的敏感性,结合高度场和风场反映出低涡对暴雨的影响,此次过程暴雨对高原涡比西南涡更加敏感,在集合预报对西南涡预报不确定性较小的情况下,集合成员对高原涡的预报是影响降水强度和落区预报的关键因子,与实况更加接近的最优集合成员与控制预报相比,预报的高原涡强度更强,位置偏东;(3)30日,夜间降水量对低涡的动力特征量较白天更为敏感,主要是因为夜间暴雨是由高原涡和西南涡垂直耦合加强引发的,动力作用较明显,而白天的暴雨热力作用更加显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号