首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 165 毫秒
1.
ENSO期间海洋性大陆典型地区闪电活动特征分析   总被引:2,自引:1,他引:1  
林锦冰  马明  傅云飞 《气象学报》2013,71(1):109-120
利用星载闪电探测器(光学瞬变探测器(OTD)和闪电成像传感器(LIS))的观测资料,配合其他气象资料,对厄尔尼诺期间(1998年春季)和拉尼娜期间(1999年春季)海洋性大陆典型地区(11.25°S—3.75°N,96.25°—128.75°E)的闪电活动变化特征进行研究,分析了雷暴单体数目以及雷暴单体闪电率对闪电活动变化的影响,并通过对比厄尔尼诺年春季和拉尼娜年春季的大气环流形势、相对湿度、最大对流有效位能、对流风暴高度等气象要素,讨论闪电活动变化的原因。结果表明:(1)从ENSO期间雷暴单体密度和闪电密度的空间分布变化特征来看,厄尔尼诺年春季的闪电活动及雷暴活动均比拉尼娜年春季的多,并且,从闪电数目和雷暴单体数目的纬向平均、经向平均的年际变化可以发现在厄尔尼诺年春季闪电活动、雷暴活动有东伸南移的趋势。(2)在海洋性大陆典型地区,雷暴单体数目的变化是闪电数目变化的主要因子,而雷暴单体闪电率的变化是闪电数目变化的次要因子。(3)与1999年春季相比,1998年春季的副热带高压范围大、强度大;地面相对湿度大,高空相对湿度小,上下层湿度差异大,有利于对流发展;对流风暴高度较高,冰相粒子层厚度也较深厚,对流发展旺盛;最大对流有效位能大于300 J/kg的天数的空间分布极大值区域正好与闪电密度、雷暴单体密度的大值区域对应,雷电活动与对流有效位能值密切相关。  相似文献   

2.
本文通过对2012年度新疆43个站点的闪电定位监测数据分析得出,闪电监测与人工观测雷暴在时间分布上一致性较好;空间分布上差异较大地区有阿勒泰和喀什地区;观测站有雷暴记录时闪电定位监测也有闪电记录的比例达64%,表明监测结果有效;新疆云地闪中,负地闪占90%,远多于正地闪。正闪强度上大于负闪强度。雷电流陡度主要分布在-20-20 KA/чs 之间;新疆区域内雷击大地密度按新规范估算的值大于老规范的估算值,更远大于闪电定位仪实际监测值。  相似文献   

3.
利用2010—2018年全球闪电定位网(WWLLN)观测资料, 采用基于闪电密度的空间聚类算法(DBSCAN)建立了西北太平洋地区雷暴数据集, 研究了该区域雷暴的时空分布特征, 并进行海陆差异对比。研究结果表明, 在合理设定DBSCAN参数阈值的条件下, 基于WWLLN闪电聚类的雷暴与天气雷达观测在时空分布和过程演变上具有一致性。西北太平洋区域的日均雷暴数为3 869, 雷暴的闪电密集区平均面积为557.91km2, 平均延展尺度为31.99 km, 平均闪电频次为33 str/(h·thu)。在空间分布上, 东南亚沿海地区与热带岛屿的雷暴活动最强, 南海的雷暴活动强于深海。距离海岸线越近的海域其雷暴面积越大。在季节分布上, 整个区域雷暴活动在夏季(6—8月)达到全年最强, 南海雷暴活动6月达到峰值, 而日本东部近海海域的雷暴活动则在冬季达到最强。我国内陆南方地区雷暴3月开始显著增多, 雷暴平均面积达到最大, 但雷暴平均闪电频次5月才达到峰值。在日变化方面, 陆地雷暴活动呈现典型的单峰型特征, 大部分雷暴发生在午后及傍晚。海洋雷暴日变化则较为平缓, 南海具有其独特的雷暴日变化特征。   相似文献   

4.
朱曦嵘  邱飞  丁旻  刘波 《贵州气象》2013,37(Z1):73-74
利用2006—2011年贵州省闪电定位仪资料和册亨一般站人工观测雷暴日资料,对人工观测雷暴日与闪电定位仪监测到的雷电日、地闪密度等进行时间和空间上的分析,找出册亨县雷暴活动的相关规律。  相似文献   

5.
利用1973—2013年嘉兴地区6个站点雷暴日逐日观测资料和2007—2013年浙江省闪电监测定位系统ADTD探测的云地闪电资料,运用气候趋势系数、气候倾向率、Morlet小波分析等方法,对嘉兴地区雷暴活动特征进行分析。结果表明:嘉兴地区年平均雷暴日数为28.9天,其中最少为嘉善县的26.4天,最多为桐乡市的32.5天,雷暴天气在中国均属中雷区。雷暴日数年代际差异较大,呈逐年下降趋势,海宁市下降最为明显,每10 a减少1.1天左右。年雷暴日数存在12 a左右的短周期和32 a左右的长周期振荡信号,在12 a时间尺度上的周期振荡特别明显。雷暴日数月变化主要呈单峰型,7月份各地的雷暴日数均处于全年的最高值。雷暴日数的空间分布差异较大,总体上从东北到西南逐渐增加。地闪中负地闪占地闪总数的97%,6—8月是地闪的高发期。地闪频次日变化呈单峰状态分布,13—19时为地闪多发时段。地闪密度有显著的地域性差异,桐乡和海宁东部、海盐南部及嘉兴市区为地闪密度高值区。  相似文献   

6.
全球闪电活动与气候变化   总被引:5,自引:0,他引:5  
郄秀书 《干旱气象》2003,21(3):69-73
全球闪电活动与气候变化关系的研究正受到越来越多的重视,该文从卫星上观测到的全球闪电活动、闪电活动和全球电路对温度的响应,闪电和对流层上部水汽的联系,闪电和N0,等几方面进行了阐述,指出了闪电活动在气候变化研究中的重要性。同时,文中还对影响闪电活动和起电过程的热力动力作用以及气溶胶的作用等进行了分析。  相似文献   

7.
杨磊  贺宏兵  杨波  孟鑫 《气象科学》2019,39(6):786-796
为提高双偏振天气雷达雷暴监测预警能力,探究雷暴活动过程雷达偏振信息特征及雷暴内部微物理过程,利用S波段双偏振多普勒天气雷达,结合地面大气电场仪和闪电定位系统资料对2015年8月31日发生在南京地区一次局地强雷暴过程进行了分析。主要利用体扫数据获得雷暴单体内部垂直剖面(Vertical Cross Section,VCS),同时结合模糊逻辑算法进行粒子类型识别,得到多个偏振参量和雷暴云内部粒子类型的垂直分布情况,进一步分析得到各偏振参量和粒子分布随闪电活动的演变规律。结果表明:在-15℃高度层以上冰晶区域出现K_(DP)的负值区与闪电活动具有很好的相关性;雷暴云中霰粒子的分布变化同闪电活动演变同步很好,在一定高度霰粒子的出现可以用来对雷暴进行预警;雷暴云中低层存在强烈的辐合上升区,利于霰和冰晶碰撞非感应起电和闪电的发生。  相似文献   

8.
北京地区的闪电时空分布特征及不同强度雷暴的贡献   总被引:2,自引:2,他引:0  
利用北京闪电定位网(BLNET,Beijing Lightning Network)和SAFIR3000(Surveillance et Alerte Foudre par Interometrie Radioelectrique)定位网7年共423次雷暴的闪电资料,并按照雷暴产生闪电多少,同时参考雷达回波和雷暴持续时间,将雷暴划分为弱雷暴(≤1000次)、强雷暴(>1000次且≤10000次)和超强雷暴(>10000次),分析了北京地区的闪电时空分布特征及不同强度等级雷暴对闪电分布的贡献。北京总闪电密度最大值约为15.4 flashes km-2a(^-1),平均值约为1.9 flashes km^-2a(^-1),大于8 flashes km^-2a(^-1)的闪电密度高值区基本分布在海拔高度200 m等高线以下的平原地带。不同强度雷暴对总雷暴闪电总量贡献不同,弱雷暴(超强雷暴)次数多(少),产生的闪电少(多),超强雷暴和强雷暴产生的闪电分别占总雷暴闪电的37%和56%。不同强度雷暴对总雷暴的闪电密度高值中心分布和闪电日变化特征影响显著,昌平区东部、顺义区中东部和北京主城区是总雷暴闪电密度大于12 flashes km-2a(-1)的三个主要高值区中心,前两个高值中心受强雷暴影响大,而主城区高值中心主要受超强雷暴影响。总雷暴晚上频繁的闪电活动主要受超强雷暴和强雷暴影响,这两类雷暴晚上闪电活动活跃,分别占各自总闪电的69%和65%,而弱雷暴闪电活动白天陡增很快,对总雷暴午后的闪电活动影响大。另外,不同下垫面条件闪电日变化差异大,山区最强的闪电活动出现在白天,午后闪电活动增强很快,主峰值出现在北京时间18:00,而平原最强的闪电活动发生在晚上,平原(山麓)的主峰值比山区推迟了约1.5小时(1小时)。  相似文献   

9.
雷暴天气过程中降水结构与闪电活动特征个例研究   总被引:1,自引:0,他引:1  
为深入分析四川雷暴天气过程中降水和闪电活动特征,运用统计与对比方法,对四川东南部一次雷暴过程中闪电活动及降水结构之间的特征进行研究。结果表明,强降水易发生在低层辐合,高层辐散的流场中,局部地区最大降水强度发生在2~5km高度。降水开始1h后,地闪频数达到最高,地闪主要以负地闪为主,正地闪不活跃。对闪电活动与亮温分布关系知,闪电活动主要发生在低于220K降水云内,闪电活动发生的区域与降水落区一致。对总闪与地闪的分布知,负地闪主要分布在总闪的外围。通过对四川雷暴过程的研究,对雷暴预报有一定的指导意义。  相似文献   

10.
从一般雷暴、灾害性雷暴和台风的闪电活动特征以及雷暴闪电尺度特征四个方面对相关研究进行梳理。一般雷暴通常具有正常极性电荷结构,云/地闪比例在3左右(中纬度地区),地闪中正地闪占比为10%左右,负地闪位置往往更集中于对流区。灾害性雷暴倾向具有活跃的云闪,低比例的地闪,易出现反极性电荷结构,正地闪比例偏高。闪电活动与灾害性天气现象之间存在关联性,部分雹暴过程具有两次闪电活跃阶段。台风中大部分闪电发生在外雨带,眼壁/外雨带闪电爆发很可能预示气旋强度的增强以及路径的改变。由闪电持续时间、通道空间扩展所表征的闪电尺度与雷暴对流强度相关。弱对流雷暴或雷暴的弱对流区域可能由水平扩展、垂直分层的电荷分布形态主导,闪电频次低,闪电空间尺度大;强对流雷暴或雷暴的强对流区域可能由交错分布的小电荷区主导,闪电频次高,闪电尺度小。   相似文献   

11.
Review on Climate Characteristics of Lightning Activity   总被引:1,自引:0,他引:1       下载免费PDF全文
Latest research results on the correlation between lightning activity and climate and climate change are reviewed. The results indicate that global lightning can be measured by using satellite optical sensor, Schumann resonances, and the time-of-arrival (TOA) techniques at very low frequency. It is observed that high lightning density areas mainly lie in seaboards, mountains, high frequency mesoscale cyclone areas, and convergent regions such as the intertropical convergence zone. Eighty-eight percent of global lightning discharges occurs in continent island and seaboard areas. The three regions hit most frequently by lightning are Congo in equatorial Africa, South America, and South and Southeast Asia. A lot of studies reveal that the global lightning activity is directly related to the earth's climate and climate change. The global lightning activity responds positively to temperature changes on many time scales, such as diurnal, pentad, intraseasonal, semiannual, annual, ENSO, and decadal time scales. However, the sensitivity of lightning to temperature changes appears to diminish at longer time scales. Since lightning can be monitored easily and continuously, it becomes a useful and important parameter for monitoring climate change. The lightning discharge is a significant producing source of nitrogen oxides (NOx) in the atmosphere, which is closely associated with ozone production and the earth's radiation balance. There exists a robust positive correlation between lightning activity and upper tropospheric water vapor on short time scales. The effect of aerosol on thunderstorm and lightning is uncertain. More observations and investigations are needed to identify the coupling mechanism between lightning and climate change.  相似文献   

12.
Lightning and climate: A review   总被引:4,自引:0,他引:4  
Research on regional and global lightning activity and the global electrical circuit is summarized. This area of activity has greatly expanded through observations of lightning by satellite and through increased use of the natural (Schumann) resonances of the Earth–ionosphere cavity. The global electrical circuit provides a natural framework for monitoring global change on many time scales. Lightning is responsive to temperature on many time scales, but the sensitivity to temperature appears to diminish at the longer time scales.  相似文献   

13.
基于卫星遥感的植被NDVI对气候变化响应的研究进展   总被引:10,自引:1,他引:9  
回顾了以往植被对气候响应的有关研究,从此类研究常使用的数据、方法及获取的结论3个方面进行了分析,重点阐述了归一化植被指数(Normalized Difference Vegetation Index,NDVI)对降水、温度和辐射等气候因子的响应特征,并探讨了未来的发展趋势。结果表明,植被NDVI对降水的显著响应往往出现在干旱半干旱地区和干湿季气候差异明显地区,且具有一定的滞后特征,滞后的时间尺度与局地条件关系密切;温度成为植被NDVI 控制因子的情况常出现在温带或寒温带地区,与对降水的滞后响应相比,植被对于温度的滞后响应并不是特别明显;辐射对于植被的主导影响主要出现在低纬度的部分区域、高云量区域和高纬度地区的特定时间段内。认为量化人类在植被对气候变化响应过程中的作用,全球变暖情形下植被对气候响应特征的深入分析,以及植被受气候影响的多尺度特征可能是以后此类研究的发展方向。  相似文献   

14.
Colin Price   《Atmospheric Research》2009,91(2-4):479-484
With recent projections of a warmer climate in the future, one of the key questions is related to the impact of global warming on thunderstorms, and severe weather. Will lightning activity increase in a warmer world? Since the majority of global lightning activity occurs in the tropics, changes in future global lightning activity will depend on changes in the tropical climate. The latest IPCC [Intergovernmental Panel on Climate Change (IPCC). 2007] projections show a partial drying out of the tropical landmasses as the global climate gets warmer. This is caused by both changes in rainfall patterns, but also due to increases in evapo-transpiration. We would expect a drier climate to produce fewer thunderstorms, and less lightning. However, experimental and modeling studies have shown that as tropical regions dry in the present climate, they experience greater lightning activity. This paradox may be explained by noting that while drier climate conditions result in fewer thunderstorms and less rainfall, the thunderstorms that do occur are more explosive, resulting in more lightning activity.  相似文献   

15.
Global warming is expected to affect both the frequency and severity of extreme weather events, though projections of the response of these events to climate warming remain highly uncertain. The range of changes reported in the climate modelling literature is very large, sometimes leading to contradictory results for a given extreme weather event. Much of this uncertainty stems from the incomplete understanding of the physics of extreme weather processes, the lack of representation of mesoscale processes in coarse-resolution climate models, and the effect of natural climate variability at multi-decadal time scales. However, some of the spread in results originates simply from the variety of scenarios for future climate change used to drive climate model simulations, which hampers the ability to make generalizations about predicted changes in extreme weather events. In this study, we present a meta-analysis of the literature on projected future extreme weather events in order to quantify expected changes in weather extremes as a function of a common metric of global mean temperature increases. We find that many extreme weather events are likely to be significantly affected by global warming. In particular, our analysis indicates that the overall frequency of global tropical cyclones could decrease with global warming but that the intensity of these storms, as well as the frequency of the most intense cyclones could increase, particularly in the northwestern Pacific basin. We also found increases in the intensity of South Asian monsoonal rainfall, the frequency of global heavy precipitation events, the number of North American severe thunderstorm days, North American drought conditions, and European heatwaves, with rising global mean temperatures. In addition, the periodicity of the El Niño–Southern Oscillation may decrease, which could, in itself, influence extreme weather frequency in many areas of the climate system.  相似文献   

16.
云与辐射的相互作用对全球的天气和气候变化过程有着重要的影响,不同高度的云有着不同的辐射强迫,获得云体高度及其在时空上的变化对研究全球气候的变化有着重要意义。本文利用云卫星上的云廓线雷达(CloudSat/CPR)2006年6月—2007年12月期间的资料,对比分析了青藏高原、高原南坡和南亚季风区域不同云类的云顶、云底高度和云厚统计量。结果表明,在所研究区域单位面积上的云顶和云底高度变化具有一定的时空连续性,不同云类的云顶和云底高度存在不同的变化范围,且随着季节的改变均有明显的变化;同时各区域不同云类的云体厚度在夏季较大,冬季较小;各区域不同云类所占的比例(云量)也具有一定的季节变化规律。  相似文献   

17.
卫星观测的我国近海海域闪电分布特征   总被引:1,自引:1,他引:0       下载免费PDF全文
利用星载闪电探测仪OTD(optical transient detecter)和LIS(lightning imaging sensor)所获取的1995年6月—2006年4月的卫星闪电资料,结合NOAA Optimum Interpolation SST海温资料,分析我国近海海域的闪电分布时空特征以及闪电活动与该海域海温之间的相关性。结果表明:我国近海闪电密度平均值为3.39 fl·km~(-2)·a~(-1),其中,南海和渤海的闪电活动相对频繁,随着与海岸线间距离以及纬度的增加,该海域闪电密度逐渐下降;在春季和冬季,黑潮主干海域的海温值相对较高,该处闪电活动也明显强于同纬度的东海近海和太平洋海域,表明黑潮海域是强闪电活动区;在季节变化上,我国近海海域闪电活动与同海域海温呈明显正相关,相关系数达0.797,闪电活动与海温变化体现出了一致的变化趋势;而在年际变化上,我国近海海域闪电活动与该海域海温的线性相关不显著,说明我国近海海域海温的年际变化并不是引起该海域闪电活动年际变化的主要原因。  相似文献   

18.
《大气与海洋》2013,51(1):117-138
Abstract

Dynamics affects the distribution and abundance of stratospheric ozone directly through transport of ozone itself and indirectly through its effect on ozone chemistry via temperature and transport of other chemical species. Dynamical processes must be considered in order to understand past ozone changes, especially in the northern hemisphere where there appears to be significant low‐frequency variability which can look “trend‐like” on decadal time scales. A major challenge is to quantify the predictable, or deterministic, component of past ozone changes. Over the coming century, changes in climate will affect the expected recovery of ozone. For policy reasons it is important to be able to distinguish and separately attribute the effects of ozone‐depleting substances and greenhouse gases on both ozone and climate. While the radiative‐chemical effects can be relatively easily identified, this is not so evident for dynamics — yet dynamical changes (e.g., changes in the Brewer‐Dobson circulation) could have a first‐order effect on ozone over particular regions. Understanding the predictability and robustness of such dynamical changes represents another major challenge. Chemistry‐climate models have recently emerged as useful tools for addressing these questions, as they provide a self‐consistent representation of dynamical aspects of climate and their coupling to ozone chemistry. We can expect such models to play an increasingly central role in the study of ozone and climate in the future, analogous to the central role of global climate models in the study of tropospheric climate change.  相似文献   

19.
Variability of global lightning activity on the ENSO time scale   总被引:2,自引:0,他引:2  
Global lightning activity has been studied on the ENSO (El Niño Southern Oscillation) time scale based on recordings of the Earth's Schumann resonances at Nagycenk (NCK), Hungary as well as observations from the OTD (Optical Transient Detector) and the LIS (Lightning Imaging Sensor) satellites in space. Both the intensity and position of lightning activity vary on the ENSO time scale. The magnitude of the global variation in lightning flash rate is ~10% from La Niña to El Niño. In general, more lightning is observed in the tropical–extratropical land regions during warm, El Niño episodes, especially in Southeast Asia. Although oceanic lightning activity is a minor contributor to global lightning, an opposite behavior is observed in the Pacific and other oceanic regions. More lightning is present during cold, La Niña conditions than during the warm, El Niño episodes. The annual distribution of global lightning is slightly offset from the equator into the Northern Hemisphere due to the north–south asymmetry of the land/ocean area ratio. Schumann resonance intensity variations suggest a southward (equator-ward) shift and satellite observations support this and show in addition an eastward shift in the global position during warm, El Niño episodes. The greatest lightning contrast between warm El Niño and cold La Niña episodes has been identified at the latitudes of descending dry air in the Hadley circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号