首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantifying Changes in Extreme Weather Events in Response to Warmer Global Temperature
Authors:Travis R Moore  H Damon Matthews  Christopher Simmons  Martin Leduc
Institution:1. Department of Geography, Planning and Environment, Concordia University, Montréal, Quebec, Canada;2. Ouranos Research Consortium, Montréal, Quebec, Canada
Abstract:Global warming is expected to affect both the frequency and severity of extreme weather events, though projections of the response of these events to climate warming remain highly uncertain. The range of changes reported in the climate modelling literature is very large, sometimes leading to contradictory results for a given extreme weather event. Much of this uncertainty stems from the incomplete understanding of the physics of extreme weather processes, the lack of representation of mesoscale processes in coarse-resolution climate models, and the effect of natural climate variability at multi-decadal time scales. However, some of the spread in results originates simply from the variety of scenarios for future climate change used to drive climate model simulations, which hampers the ability to make generalizations about predicted changes in extreme weather events. In this study, we present a meta-analysis of the literature on projected future extreme weather events in order to quantify expected changes in weather extremes as a function of a common metric of global mean temperature increases. We find that many extreme weather events are likely to be significantly affected by global warming. In particular, our analysis indicates that the overall frequency of global tropical cyclones could decrease with global warming but that the intensity of these storms, as well as the frequency of the most intense cyclones could increase, particularly in the northwestern Pacific basin. We also found increases in the intensity of South Asian monsoonal rainfall, the frequency of global heavy precipitation events, the number of North American severe thunderstorm days, North American drought conditions, and European heatwaves, with rising global mean temperatures. In addition, the periodicity of the El Niño–Southern Oscillation may decrease, which could, in itself, influence extreme weather frequency in many areas of the climate system.
Keywords:extreme weather  climate change  global warming  heavy precipitation  drought  tornadoes  severe thunderstorms
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号