首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
由地基微波辐射计测量得到的北京地区水汽特性的初步分析   总被引:25,自引:3,他引:22  
首先对比分析了三种测量水汽技术(地基微波辐射计、探空、GPS)之间的差异, 得到地基微波辐射计与探空的差值为0.281cm, GPS与探空的差值为0.728 cm, 地基微波辐射计与GPS的差值为0.322 cm。接着就地基12通道微波辐射计测量得到的水汽总量 (简称PWV), 分析了北京地区水汽在四个季节中的日变化特征。秋季日变化差为0.162 cm, 冬季日变化差为0.130 cm, 春季日变化差为0.229 cm, 夏季日变化差为0.276 cm。另外, 北京地区四个季节中水汽最大值/最小值出现频率最高的时间段呈现一定的特征。即四个季节中在北京时间00:00到00:59和23:00到23:59这两个时间段中, 水汽出现最大值/最小值的概率较其他时间段都高, 其中冬季在北京时间10:00到10:59之间出现最小值的概率最高。水汽总量PWV每小时变化率在四个季节中都存在这样的现象: 出现正的水汽总量PWV每小时变化率的百分比与出现负的水汽总量PWV每小时变化率的百分比相当, 几乎都为50%。最后就水汽与温度相关性做了分析, 分别得到四个季节中各个小时水汽与温度的相关系数, 结果显示各个小时水汽与温度的相关性在四个季节中, 除了夏季从北京时间09:00到22:00为负相关外, 其他时间段内都为正相关。而且各个小时水汽与温度的相关系数都按照秋、春、 冬、夏的顺序递减。  相似文献   

2.
对比分析多通道微波辐射计、GNSS/MET(GPS)与常规探空观测资料,利用微波辐射计观测资料分析呼和浩特地区水汽分布特征。结果表明:微波辐射计的温度廓线在3km以下比较准确,相对湿度和水汽密度在2km以下具有参考价值。微波辐射计、GPS与探空测量水汽的绝对误差分别为0.38cm与1.0cm,且均高于探空值。呼和浩特地区水汽具有明显的季节变化与日变化特征,夏季水汽平均值最大,为2.59cm,秋季其次,为1.52cm,春季和冬季分别为0.96cm和0.54cm。四个季节的水汽日较差夏季(0.20cm)>秋季(0.17cm)>冬季(0.14cm)春季(0.09cm),水汽的日变化率冬季(26.63%)>秋季(12.01%)>春季(9.63%)>夏季(8.53%)。水汽最大值、最小值出现频率具有一定特征,不同季节水汽最大值出现在23:00—23:59的概率最大,最小值在00:00—00:59出现的概率最大。  相似文献   

3.
利用2013年3月至2017年2月天津西青地基35通道微波辐射计观测资料,分析天津地区大气水汽和液态水特征。结果表明:天津地区各季节积分水汽和积分液态水的日变化趋势基本一致,均呈单峰型日变化特征,其中夏季最大,秋季次之,冬季最小。各季节积分水汽最大值出现在23:00时(北京时,下同)的概率均明显大于其他时次,夏季和冬季的积分液态水的最大值出现在14时的概率最大,春季和秋季分别出现在10时和13时的概率最大。天津地区水汽密度由地面至3.5 km处逐渐减小,递减梯度由夏季、秋季、春季和冬季的顺序依次增大,各季节从1.5 km往上日变化均不明显。1 km以下,春季、夏季和秋季平均水汽密度的日变化曲线呈双峰型,主峰值分别出现在08时、11时和12时左右。冬季呈单峰型变化,峰值区出现在12-16时。液态水密度随高度分层变化,夏季的液态水密度大值区(0.08-0.14 g·m-3)为5-6 km,在18-20时出现最大值。秋季、春季和冬季液态水密度的大值区出现的高度为1.5-3.5 km,但数值依次减小,春季和冬季的最大值出现在05时前后,秋季则出现在02时左右。另外天津地区水汽、液态水与温度和降水量的变化趋势基本一致,除夏季06-18时及冬季部分时次外,水汽与温度呈正相关。液态水与温度相关性较差,但与降水量呈正相关,全年液态水与降水量夜间的相关性大于白天。  相似文献   

4.
简要介绍了中国气象局成都高原气象研究所设立在青藏高原东侧和成都平原的两个大气边界层观测站:理塘站和温江站,并利用2007年2~4月两站获得的近地层气象要素观测资料,对这两个地区风速、气温和湿度日变化特征及廓线规律,土壤温湿变化特征,以及辐射情况进行了分析和对比,得到了如下一些有意义的结果:(1)两站风温湿均表现出明显的日变化特征。理塘站风速极大值和极小值出现时间均比温江站晚2小时。理塘站温度梯度值日变化较一致而温江站早晚温度梯度值要大于白天。两站湿度梯度值都是白天较小早晚较大。(2)两站风速廓线规律相似,基本满足对数律关系。理塘站在18:00~6:00,温江站在18:00~8:00均有逆温现象出现,相邻两层高度最大温度差分别达到0.54℃和1.02℃。理塘站8:00~18:00在8m和24m高度,温江站10:00~14:00在9.05m和18.25m高度上能观测到逆湿现象,相邻两层高度最大比湿差分别为0.1g/kg和0.04g/kg。(3)理塘站浅层(0cm和5cm)土壤温度表现出明显的日变化特征,而10cm以下土壤温度日变化幅度很小。温江站4cm,10cm和20cm土壤温度都表现出明显的日变化特征,较之理塘站影响的深度更深。理塘站土壤温度的垂直变化程度要小于温江站。两站各层土壤湿度均无明显日变化特征。(4)温江站向下长波辐射通量日变化不大,其他各个辐射量日变化都很明显。理塘站向下总辐射和反射辐射明显强于温江站。  相似文献   

5.
梁丽  庞文静  雷勇  王志超  梁存 《气象科学》2019,39(4):515-523
基于国家雷电定位网2010—2014年雷电定位数据和2010—2013年地面气象资料,分析了北京地区各季地闪活动时空分布特征及其与降水量的关系。结果表明,北京地区雷电活动具有明显的日变化特征;雷电发生频次随季节变化明显,负闪和全地闪在秋季变化幅度最大;雷电发生频次最大值和最小值出现时间随季节变化,春季、夏季日循环峰值出现时间在22∶00—23∶00(北京时间),秋季日循环峰值出现时间在01∶00,冬季则为15∶00且不具有显著性;从空间分布上看,可以看出雷电活动分布具有局地性特征,北京地区雷电活动最频繁的地区集中在密云县和平谷区的迎风坡一带、通州区与市辖区交界处,高雷暴日区域位于延庆县、昌平区和平谷西部,延庆县和怀柔区的北部及房山区和门头沟交界处的西部,雷暴发生频次和雷暴日空间分布不完全吻合。通过各季雷电发生频次日变化序列的谐波分析可知,日循环为日变化的主要信号。春季、夏季、秋季雷电发生频次和降水量两者整体变化趋势一致,降水量较雷电发生频次变化缓慢。  相似文献   

6.
利用塔克拉玛干沙漠腹地塔中气象站2009-2018年的地面观测资料,细致解析塔中地区的风蚀起沙特征,所得结论如下:(1) 临界起沙风速表现出明显的季节变化特征,夏季>春季>秋季>冬季, 塔中地区的临界起沙风速介于4.47-4.92 m/s,日最大值出现09:00-10:00时。(2) 春夏季是沙尘的多发季节。春、夏季,沙尘水平通量的平均值分别为2638.9 kg/m和3298.9 kg/m,起沙持续时间的平均值分别为291.5 h和336.7 h。(3) 风蚀起沙事件更容易发生在白天, 沙尘水平通的最大值出现在10:00-11:00,起沙持续时间的最大值出现在10:00-13:00。(4)风蚀起沙事件在春季主要集中在偏东方向,在夏季主要集中在偏北方向上。  相似文献   

7.
利用2010年北京市南郊观象台与门头沟自动气象站的逐时气象数据,研究分析了北京气温、土壤温度、风速和相对湿度的日与月际变化趋势特点。结果表明:1)虽然处于不同区域,但2个自动气象站所反映的气温、土壤温度、风速和相对湿度的日季变化特征基本一致。2)经过月平均化处理后,每个月中,气温日变化特征基本一致,均存在明显的正弦曲线变化,一天中含有一个峰值和谷值,气温高峰值出现在15:00-16:00,谷值则出现在06:00左右。气温高峰值不再出现在14:00的现象,可能与城市土地利用与人为活动有关。3)自动气象站点的气温月际变化基本呈高斯分布,7月份气温最高,1月份气温最低;且南郊观象台与门头沟自动气象站的月均气温的平均值差异不显著。4)浅层土壤温度的日变化特征与气温基本一致,随着土壤深度的增加,土壤温度的日变化曲线逐渐趋于平缓,深层土壤温度较稳定,日变化很小,接近于恒值。5)土壤温度月均值的最大值出现时间随深度增加而向后推移,浅层土壤最大值一般出现在7月,最小值一般出现在1月;地表温度变化幅度最大,达27.3℃。深层土壤温度最大值一般出现在8月,最小值一般出现在2月;80 cm变化幅度最小,只有6.9℃。6)南郊观象台和门头沟瞬时风速全年平均值分别为2.31 m/s、1.78 m/s,通常在14:00-18:00风速出现最大值。7)相对湿度最大值均出现在05:00-07:00,最小值均出现在12:00-15:00,日变化呈双峰型;月际变化为单峰双谷型;2010年南郊观象台和门头沟相对湿度全年平均值分别为51%、54%。  相似文献   

8.
利用2016年12月1日~2017年11月30日,地基微波辐射计、L波段探空资料和地面常规气象资料,对四川盆地的水汽和云液态水进行了初步分析。结果表明:(1)探空与微波辐射计反演的水汽含量差值为0.558cm,相关系数为0.787,且通过了α=0.01显著性检验,微波辐射计反演的水汽含量是可信的。(2)基于地基微波辐射计分析四川盆地水汽和云液态水含量的变化特征,可以得出,夏季水汽含量最多,秋季云液态水含量最多;最大值出现在夜晚,最小值出现在白天,夜晚值大于白天。水汽含量和云液态水含量最大值和最小值时间间隔秋季最长(均为16小时),冬季最短(分别为9小时、10小时);水汽含量日较差在秋季最大(1.096cm),冬季最小(0.489cm),云液态水含量日较差在夏季最大(0.908mm),冬季最小(0.311mm)。水汽含量与降水、温度的月变化特征为显著性正相关,相关系数分别为0.842和0.915;与温度日变化特征在春、秋季的11:00~次日01:00为显著性正相关,白天相关性大于夜晚,在夏季01:00~13:00为显著性负相关,日出前相关性最高。(3)水汽和云液态水含量在降水过程开始前1~2h有明显的波动上升,降水结束后,水汽和云液态水含量迅速减少,水汽和云液态水的变化特征对降水天气的预报具有指示意义。   相似文献   

9.
利用2012—2019年新疆伊犁河谷10个气象站逐小时降水资料,分析该区域不同季节降水的日变化特征。结果表明:(1)伊犁河谷春季、夏季和冬季的累计降水量日变化呈单峰型,秋季呈双峰型。四季累计降水量日变化的低值都出现在下午(15:00—19:00),高值时段在春季、秋季和冬季的上午(10:00—12:00),夏季高值出现在前半夜(22:00)。(2)同一季节累计降水频次和累计降水量的日变化特征类似,逐时平均降水量和降水频次峰值的空间分布均存在明显区域差异。(3)伊犁河谷四季均以短历时降水事件为主,该类事件在夏季出现比例最高(89%),冬季出现比例最低(70%),且短历时降水事件是夏季总降水量的主要贡献者,而长持续性降水事件是冬季总降水量的主要贡献者。(4)伊犁河谷四季降水的日循环与降水的持续性之间都存在密切关系,其中持续2~8 h和1~4 h的降水事件是春季和夏季降水量日变化峰值的主要贡献者,不同持续时间降水事件对秋季和冬季降水量日变化峰值的贡献大致相等。  相似文献   

10.
运用2013-2014年28个自动气象站的逐小时气温观测资料,分析了乌鲁木齐地区气温的日变化特征及季节特征。结果表明:1)城郊日最高气温出现频率最大的时次均为北京时间17时,出现频率在20%以上。日最低气温出现频率最大的时次为8时,频率在30%以上;2)年平均城郊气温差异即城市热岛强度在夜晚较大,早上7时左右达到最大,在1.5℃以上,白天较小,16时左右最小,仅有0.3℃左右;3)城郊日最高气温出现时间基本一致,但日最低气温出现时间有差别,冬季郊区最低气温出现滞后城区1小时,其他季节保持一致;4)城区逐小时城市热岛强度日内变化可分为三个阶段:8点到17点为下降时期,17点到22点为迅速上升时期,22点到第二天8点为稳定的强热岛时期;5)侯平均城市热岛强度年内变化,最大值发生在年终的第72候,为1.53℃,最小值发生在第秋末第67候,为0.33℃;6)综合来看,各季代表月平均城市热岛强度春季(4月)夜晚较强,夏季(7月)夜晚和白天都相对较弱,秋季(9月)夜晚最强,但白天最弱,甚至白天部分时刻(15到18点)出现了负值。冬季白天和晚上都比较强,是四季代表月份平均热岛强度最强的季节。  相似文献   

11.
用大理、理塘和林芝的地面自动气象站资料,对比分析3站气温、相对湿度、本站气压、瞬时风速、地面温度的日变化特征。结果表明:大理、理塘和林芝气温最低值和相对湿度最大值的出现时间分别为7时、7时左右和8时左右,气温最高值和相对湿度最小值出现的时间均在16时左右。3站气压日变化呈"双峰双谷型,"2个高峰值时段分别出现在10时左右和凌晨0~1时,2个低谷值时段分别出现在17时左右和5时左右。风速在凌晨至7时左右较低,之后至傍晚不断增大并出现极大值,日落后逐渐减小。3站地面温度7时左右出现最低值,14时左右出现最高值。从季节变化情况看,气温和地面温度出现最高值、最低值的月份及变化幅度最大的月份基本相同。地面温度增、降幅度最大的季节分别是春季、秋季。气压随季节变化幅度较气温、相对湿度小。初春风速较大,秋季风速较小,风速对相对湿度有一定影响,大理和林芝相对湿度出现最小值的月份与风速出现最大值的月份相同。各要素值基本是大理最大,林芝次之,理塘最小,这与3站的纬度、海拔高度和下垫面性质有关。  相似文献   

12.
典型城市区与森林区空气负氧离子特征比较分析   总被引:1,自引:0,他引:1  
利用连续15个月逐小时对比观测资料,分析比较了典型城市区和森林区负氧离子特征,结果显示:1城市区负氧离子平均浓度为240个/cm3、森林区为1470个/cm3,森林区明显高于城市区5~6倍;森林区负氧离子中"小离子"约占8成、"中离子"约占2成,而城区"中离子"几乎为零。2城市区和森林区负氧离子浓度日变化趋势大体一致,夜间高于白天,午夜到早晨为高浓度时段,峰值出现在凌晨04:00—5:00;低浓度时段在中午到傍晚前后,最低值均出现在13:00。3负氧离子浓度在季节分布上,森林区以春季和冬季较高,城市区以秋季较高。城市区秋季较高可能与当年秋季雨水异常偏多有关。4大老岭林区负氧离子浓度有缓慢下降趋势,而城市区有缓慢上升趋势。5负氧离子日平均浓度,城市区以雾天和雨天较高,雷雨天、阴天次之,晴天较低;森林区以晴天和雷雨天气较高,阴天次之,而雨天和雾天反而较低,与城市区相反。  相似文献   

13.
利用2009年11月-2010年10月青藏高原玛多自动气象站辐射平衡观测资料,分析了高原两种不同下垫面辐射平衡各分量的季节平均日变化和年变化特征.结果表明,各季节的平均总辐射日变化和年变化在两种下垫面的趋势基本一致,夏季总辐射为非零值的时间在早上要比冬季早2h左右,而在傍晚出现零值的时间要比冬季晚2h左右.夏季总辐射最强、冬季最弱,年变化最小值为0.544 MJ·m-2,出现在1月;最大值为1.001MJ ·m-2,出现在7月.在11:00-16:00(北京时)之间反射辐射冬季最强、夏季最弱.这种现象与总辐射日变化趋势恰好相反,反射辐射的年变化最小值出现在2月,平均最小值为0.157MJ· m-2;最大值出现在11月,平均最大值为0.326 MJ· m-2.1号点和2号点反射辐射差值冬季最大,达到0.06 MJ·m-2;春季最小,为0.03 MJ·m-2.净辐射年变化最小值为-0.025 MJ·m-2,出现在12月;最大值为0.477 MJ·m-2,出现在7月.地表反射率2个观测点的变化趋势大致相同,各季节地表反射率最大值、最小值和平均值都是2号点大于1号点,平均偏大8%.  相似文献   

14.
通过对张掖市2005~2006年紫外线强度监测资料综合分析,得出张掖市紫外线辐射3级强度以上占全年的58.8%,属于紫外线辐射高强度地区,对人体影响很大。日最大值出现在12:00—14:30时段,年以6—9月为最强。各季节紫外线变化以夏秋2季波动较大,主要是因为该季节天气现象复杂。统计分析发现,云量的多少对紫外线的辐射强度影响很大,当全天或11:00~16:00时段内云量达到6成以上时,紫外线强度均在2级以下。  相似文献   

15.
利用在青藏高原东南缘云南大理点苍山-洱海间不同海拔高度设立的自动气象观测站资料,分析了2012年1月1日—2014月12月31日的风向、风速、气温、相对湿度和气压等气象要素的立体变化特征,得出:1)不同海拔高度风速日变化均呈单峰型分布,海拔高度及地形对风速影响较大,海拔2640.0 m位于东西风局地环流高度位置。海拔1990.5~2640.0 m都存在东西风、南北风转化的日变化。2)气温日变化是单峰型分布,最小值出现在日出后,最大值出现在午后至日落前。3)相对湿度日变化是单峰型分布,海拔3520.0 m及以上的相对湿度最大值出现在22:00,最小值出现在11:00,而海拔1975.4~2640.0 m最大值出现在07:00-08:00,最小值出在15:00-17:00。4)气压日变化为双峰双谷型,第一个峰值出现在中午前,第二个峰值出现在午夜;第一个谷值出现在日出前,第二个谷值出现在日落。探讨了云南大理点苍山-洱海不同海拔高度气象要素日变化特殊分布是由于地形环境、水陆分布以及太阳辐射分布差异造成的,为今后研究高原复杂下垫面的大气结构、地气交换及局地环流时空变化特征提供重要依据。  相似文献   

16.
对2013—2015年山西省大气电场监测系统8个观测站点的观测数据进行了统计分析。着重分析了山西省中北部地区近地面晴天大气电场的时间变化特征,以及大气电场与SO2、NO2、PM10、PM2.5浓度的相关性。结果表明:8个站的日变化均为双峰双谷型,具有典型的大陆型大气电场特征。第一个波谷均出现在04:00—06:00(北京时,下同),第二个波谷出现在12:00—16:00,下午的波谷略低于早晨;第一个波峰出现在07:00—10:00,第二个波峰出现在19:00—21:00,傍晚的值略低于上午。日变化与太阳对地面的辐射和人类活动保持较好的一致。8个站的大气电场年变化为单峰单谷型,波谷出现在夏季,波峰出现在冬季,春季和夏季、夏季和秋季的交界明显,秋季和冬季、冬季和春季的交界不明显。晴天大气电场的变化与大气中SO_2、PM_(2.5)的浓度有较好的一致性,呈正相关,与NO_2、PM_(10)的相关性较差或不相关。  相似文献   

17.
塔克拉玛干沙漠北缘近地层气象要素变化特征   总被引:2,自引:0,他引:2  
利用塔克拉玛干沙漠北缘哈德自动气象站2011年1~12月近地面层气象要素梯度观测资料,分析了该地区近地层风速、气温和相对湿度的日变化规律及四季廓线特征,并计算了哈德观测点大气稳定度和中性条件下的地表粗糙度。结果表明,哈德地区近地层0.5~10 m高度范围内气温、相对湿度和风速都呈现出明显的日变化特征。其中,风速为白天高、夜晚低,中午15:00各层风速均达到最大,凌晨04:00降至最低,其日变化幅度为1.1~1.7 m/s;14:00~15:00各层气温均为最大值,最低气温出现在05:00~06:00,昼夜温差大,最大温差为0.5 m处的16.5℃,下午17:00至次日09:00有逆温存在;相对湿度日变化在25%~55%之间,其变化规律与风速、气温的相反,凌晨06:00最大,下午15:00最低。哈德地区四季近地层风、温、湿廓线变化规律明显,14:00四季风速都呈指数形式增长,其中0.5~2 m间低层风速变化明显大于2~10 m间高层的变化;春、夏季气温主要以指数形式增长,冬季以线性增长为主,四季都有逆温存在;冬季的相对湿度明显大于其它季节。另外,哈德地区全年以东北风为主,2 m与10 m高度的主导风向一致,风频稍有差别。中性层结大气条件下的空气动力学粗糙度范围为1.42×10-11~1.7×10-3m,平均值为4.2×10-5m。  相似文献   

18.
寿光日光温室温湿度变化特征分析   总被引:1,自引:0,他引:1  
王晓立  王文  袁静 《山东气象》2014,34(1):49-53
对寿光日光温室秋、冬、春季节不同天气状况的温湿度变化特征、通风及增温时段进行分析。结果表明,温室内气温在不同天气状况下有明显的日变化,晴天、多云、阴天时日最高气温分别在24~35℃,22~30℃,20~25℃,最高值均出现在13:00前后;日最低气温分别在9~16℃,11~20℃,09~12℃,最低值出现在06:00—07:00。温室内相对湿度在白天降低,夜间升高,晴天与多云天气时,日相对湿度最大值在75%~86%,最小值在20%~50%,阴天时,最大值在85%~90%,最小值在40%~60%。晴天时,秋、冬、春季节的适宜通风时段分别在11:00—15:00、13:00前后、12:00—15:00,多云天气的适宜通风时段分别在12:00—15:00、13:00前后、12:00—13:00,阴天时,在中午前后进行通风排湿。晴天与多云天气时,秋、冬季节的增温时段分别在00:00—07:00、00:00—09:00,阴天时冬季增温时段在19:00—次日10:00。经过对温室环境进行调控,有效促进温室作物的增产增收。  相似文献   

19.
利用1960-2009年石河子垦区3个国家级气象站的气象资料,分析大雾天气的气候变化特征。结果表明:石河子垦区年均雾日空间分布特征明显,西北多,东南少,时间分布极不均匀,石河子站雾日呈逐渐减少型,莫索湾站和炮台站呈逐步增多型;石河子垦区雾日在全年的分布状况是春季最多,冬季次之,秋季最少;大雾的逐月变化呈显著季节性特征,集中出现在10-3月,而4-9月,基本无发生;下半夜至翌日上午较易出现大雾,起雾时间为00:00-13:00,其中10:00-12:00最易起雾,雾消时间为14:00-23:00,16:00-22:00雾最易消散;温度在-10~-20℃、相对湿度在91%~100%、风速0~2m/s、风向偏东风和偏南风下石河子雾最易发生。雾天气气候特征及气象条件的分析是预报其发生时间和地点的基础,充分认识其特征和规律是提高雾天预报准确率的前提。  相似文献   

20.
基于1981-2010年CERA-20C全球大气边界层高度(Boundary layer height,BLH)再分析资料对青藏高原边界层高度的日变化特征,包括日变化的季节变化、年代变化与年际变化进行研究。结果表明:BLH大值区在海拔大于5 000 m地区以及沙漠干旱地区,其中尼玛等地为边界层高度大值区的扩散源地。03:00(世界时,下同)-06:00 BLH增加最剧烈,增幅达948. 67 m·(3h)~(-1); 09:00-12:00降低最剧烈,降幅达760. 02 m·(3h)~(-1)09:00为最大值,晚于非高原地区(06:00),30年平均最大值可达1 982. 764 m,日变化最大值可达2 901. 21 m,昼高夜低。BLH最大值在春季为最大、夏季最小,BLH最小值在夏季最大、秋季最小。高原西坡BLH在春秋季最大,腹地在冬季最大,东坡BLH低,变化幅度小。03:00 BLH逐月变化趋势为单峰变化特征。BLH除夏季年际变化平稳变化以外,春、秋、冬三季在20世纪80年代中期,20世纪90年代末与21世纪初均存在较大波动。冬季边界层高度近30年逐渐增加,特别是在21世纪初的大幅持续增加值得重视。春季高原腹地处于积雪融化时期,积雪融化带走地表热量,促使春季地表气温更低,边界层高度春季与地表气温呈负相关,同时夏季相对湿度为波状分布,相对湿度梯度最小值与边界层顶相对应,边界层高度在春季比夏季更高。边界层高度发展最高时,高原边界层内通常为上升运动与下沉运动交替,为边界层发展提供一定的动力条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号