首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Approximately 30% of the land surface is arid, having desert or semi-desert conditions. Aerosol originating from these regions plays a significant role in climate and atmospheric chemistry of the atmosphere. Retrieving aerosol properties from space-borne platforms above desert conditions, where the surface reflectance is usually very bright, is a challenging task. The proportion of the surface to top of atmosphere (TOA) reflectance can reach values over 90%, especially for wavelength above 500 nm. For these reasons detailed knowledge of aerosol and surface optical properties from these regions is required to separate atmosphere from intrinsically bright surfaces.
An approach to retrieve aerosol properties over arid and semi-arid regions based on the Bremen Aerosol Retrieval (BAER) has been developed and validated within the Dust Aerosol Retrievals from Space-Born Instruments (DREAMS) Project, which is part of the Saharan Mineral Dust Experiment ( SAMUM, 2006 ). Combining measurements of the backscattered radiation from the Medium Resolution Imaging Spectrometer (MERIS) instrument aboard Environmental Satellite (ENVISAT) and ground-based measurements in Morocco in radiation closure experiments yields the aerosol optical properties of mineral dust at selected locations.  相似文献   

2.
段民征  吕达仁 《大气科学》2007,31(5):757-765
陆地上空标量辐射对地表反射率和大气气溶胶散射都具有很强的敏感性,而偏振反射只对大气气溶胶敏感,对地表不敏感。根据这个原理并结合POLDER(POLarization and Directionality of Earth Reflectance)资料的特点,作者提出综合利用标量辐射和偏振反射信息来实现陆地上空大气气溶胶和地表反照率的同时反演。首先,利用多角度偏振辐射观测提取大气气溶胶光学参数,再利用标量辐射测量对偏振反演结果作进一步筛选和订正,同时获得地表反射率。数值模拟试验结果证明,仅利用偏振信息只能获取大气气溶胶信息,而且其结果误差较大,特别是对于散射作用较强的短波长通道如670 nm误差更大,但经过标量辐射订正后的结果得到明显改善,气溶胶光学厚度和地表反射率与真实值之间相关系数都达到0.99以上。为提高查找表的计算效率,提出并建立了反演方案所需要的半参数化数值表,利用内插方法寻求气溶胶光学厚度和地表反射率的数值解的反演方法。  相似文献   

3.
尝试以单星多角度卫星观测数据同时反演晴空陆地的气溶胶光学厚度和地表反射率,并选取2009年5月的MODIS(Moderate Resolution Imaging Spectroradiometer)1B资料进行了反演试验.结果表明:单星多角度法反演得到的气溶胶光学厚度结果与MODIS气溶胶产品(MOD04)平均值的相关系数为0.7914;反演的地表反射率结果与MODIS地表反射率产品(MOD09)也具有较好的一致性.对直接利用单星多角度观测数据反演获得一段时间内平均的气溶胶光学厚度进行了有益的尝试.  相似文献   

4.
大气气溶胶光学厚度的卫星双通道遥感方法   总被引:6,自引:1,他引:5  
提出了一种在晴空条件下,均匀下垫面上利用NOAA-14极轨卫星甚高分辨率辐射计(AVHRR)可见光和近红外两个通道观测的反射率资料,遥感整层大气气溶胶光学厚度的双通道方法,该方法把气溶胶散射的波长关系加以推广,把近红外通道的光学厚度均值引入了可见通道,使单个通道中地表反射率和大气因子参数化的误差得以抵消,从而极大地提高了反演精度(〉90%)。  相似文献   

5.
由于陆地地表反照率的复杂性,陆地上空气溶胶的反演一直是卫星对地观测的一个难点,针对这个难点,作者提出联合利用偏振反射率和总反射率提取陆地上空大气气溶胶光学厚度和地表反照率及其区域分布的反演方案,提出了利用NCEP资料订正由海拔高度引起的Rayleigh散射变化的具体方法,并利用POLDER(POLarization and Directionality of Earth's Reflectance)的LEVEL-1B资料进行实际反演计算,给出中国华北地区气溶胶光学厚度和地表反照率的区域分布。反演结果与地基观测进行了对比验证分析,结果表明,综合利用标量辐射和偏振信息的可以实现区域乃至全球尺度的大气气溶胶和地表反照率的定量反演。  相似文献   

6.
Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well-researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, an aerosol retrieval algorithm using the MODIS 500-m resolution bands is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta region. The rationale of our technique is to first estimate the aerosol reflectances by decomposing the top-of-atmosphere reflectances from surface reflectances and Rayleigh path reflectances. For the determination of surface reflectances, a Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. For conversion of aerosol reflectance to aerosol optical thickness (AOT), comprehensive Look Up Tables specific to the local region are constructed, which consider aerosol properties and sun-viewing geometry in the radiative transfer calculations. Four local aerosol types, namely coastal urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on 3 years of AERONET measurements in Hong Kong. The resulting 500 m AOT images were found to be highly correlated with ground measurements from the AERONET (r2 = 0.767) and Microtops II sunphotometers (r2 = 0.760) in Hong Kong. This study further demonstrates the application of the fine resolution AOT images for monitoring inter-urban and intra-urban aerosol distributions and the influence of trans-boundary flows. These applications include characterization of spatial patterns of AOT within the city, and detection of regional biomass burning sources.  相似文献   

7.
Based on a vector radiative transfer model of the atmosphere-ocean system, the influence of oceanic components on radiation processes, including polarization effects, was investigated in the wavelength region ranging from 0.380 to 0.865 μm. The components considered were phytoplankton, inorganic suspended material (sediment), and colored, dissolved organic matter. Due to their important roles in oceanic radiation processes, the sensitivity of the bidirectional reflectance to the rough ocean surface, represented by the wind velocity 10 m above the ocean surface, and aerosol, were taken into account. The results demonstrated that both radiance and polarized radiance just below the ocean surface were sensitive to the change of the concentrations of the considered components, while the dependence of polarized radiance on the observation geometry was more sensitive than radiance. Significant differences in the specular plane existed between the impacts of the phytoplankton and sediment on the degree of polarization just above the ocean surface at 670 nm. At the top of the atmosphere (TOA), polarization was relatively insensitive to changing concentrations of ocean particles at longer wavelengths. Furthermore, the radiance at the TOA in the solar plane was more sensitive to the aerosol optical thickness than wind velocity. In contrast, wind velocity strongly influenced the radiance at the TOA in the sun glint region, while the polarization degree showed less dependence in that region. Finally, a nonlinear optimal inversion method was proposed to simultaneously retrieve the aerosol and wind velocity using radiance measurement.  相似文献   

8.
Aerosol optical parameters, polarized phase function and single-scattering albdeo, have been retrieved from ground-based sun photometer measurements in Beijing 2003. The measured aerosol optical thickness varies from 0.12 to 0.77 with an average value of 0.39. The measured Ångström coefficient ranges from 0.75 to 1.47 with an average value of 1.21. The retrieved single-scattering albedo at 870 nm is within the 0.76–0.94 range and the average value is 0.85, suggests there are considerable aerosol absorptions in Beijing. The maximum value of retrieved polarized phase function at 870 nm ranges from 0.068 to 0.225 with an average value of 0.16, and it illustrates good correlations with the Ångström coefficient, i.e. the relative size of aerosol particles. Analyses of measurements and theoretical calculations show the polarized phase function is sensitive to aerosol size distribution and complex refractive index, especially the imaginary part of the refractive index which denotes aerosol light absorbing effects. These results suggest that the polarized phase function is an effective and unique aerosol optical parameter and is able to improve the retrieval of aerosol physical properties.  相似文献   

9.
开发AVHRR可见光通道反演陆地气溶胶光学厚度 (AOD) 的算法对于研究长时间序列AOD的变化有重要意义。AVHRR由于缺少2.1 μm通道而不能采用MODIS的暗背景算法,该文利用背景合成算法进行陆地AOD反演。背景合成算法是指假设一段时间内地表反射率变化不大且会出现相对清洁大气, 采用最小值合成即可得到地表反射率,再通过辐射传输模式6S制作的查算表查算得到AOD的反演结果。将此算法应用到2009年AVHRR中国部分陆地区域 (15°~45°N,75°~135°E) 得到AOD的时空分布,将反演结果与同期Aqua/MODIS的MOD04 AOD产品进行对比分析表明,华北和华东地区的反演效果较好,西北地区结果较差。以长江三角洲地区为例可知,AVHRR AOD产品与MODIS AOD产品以及AERONET观测的AOD相比相关系数基本在0.6以上,从时间变化规律来看,AVHRR AOD和MODIS AOD产品年变化趋势具有很好的一致性。该文为建立长时间序列AVHRR AOD数据集提供了一个较为可行的方法。  相似文献   

10.
利用静止卫星MTSAT反演大气气溶胶光学厚度   总被引:10,自引:1,他引:9  
卫星遥感是获取气溶胶光学特性的重要手段,利用静止卫星可见光通道资料反演气溶胶光学厚度(AOD)的算法使用日本静止气象卫星MTSAT可见光通道资料反演了2008年5月中国地区陆地上的气溶胶光学厚度,将得到的结果分别与AERONET站点的地面观测值进行比较,得到了较好的线性相关关系,再将其与相应的MODIS气溶胶光学厚度产品进行比较,也得到了较为一致的分布,表明MTSAT反演的气溶胶光学厚度产品可以反映大气气溶胶光学厚度的日变化信息。最后对这种反演算法的误差来源进行了分析。  相似文献   

11.
Aerosol optical properties over Beijing and Xianghe under several typical weather conditions (clear sky, light haze, heavy pollution and dust storm) are derived from POLDER (POLarization and Directionality of the Earths Reflectances)/PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) multi-directional, multi-spectral polarized signals using a more reliable retrieval algorithm as proposed in this paper. The results are compared with those of the operational retrieval algorithm of POLDER/PARASOL group and the ground-based AERONET (AErosol RObotic NETwork)/PHOTONS (PHOtometrie pour le Traitement Operational de Normalisation Satellitaire) measurements. It is shown that the aerosol optical parameters derived from the improved algorithm agree well with AERONET/PHOTONS measurement. The retrieval accuracies of aerosol optical thickness (AOT) and effective radius are 0.06 and 0.05 mu m respectively, which are close to or better than the required accuracies (0.04 for AOT and 0.1 mu m for effective radius) for estimating aerosol direct forcing.  相似文献   

12.
为了利用水面进行大气气溶胶粒子尺度分布的反演,需要水体光谱反射率资料;本文利用水库上空MODIS观测的表观反射率资料来订正出实际的水体光谱反射率。假设在干旱的春季水库水面反射率变化不大,用订正的水库水面光谱反射率平均值进行大气气溶胶尺度分布的反演。从两天个例研究来看,利用多通道MODIS资料可以反演出大气气溶胶粒子的尺度变化。结合天气分析2002年4月11日水库上空气溶胶光学厚度增加、粒子变粗,是由于上游区域的沙尘在高空强西北气流引导下到达本地区。  相似文献   

13.
一种反演气溶胶光学厚度的改进方法   总被引:1,自引:0,他引:1       下载免费PDF全文
该文提出了一种简单快速反演气溶胶光学厚度的方法,该算法对地表反照率的处理与MODIS V5.2算法相同,但气溶胶谱分布假定为Junge谱,设置了新的气溶胶参数。应用2006年9月6日—2008年6月10日太湖MODIS观测资料和2008年5月20日—2009年7月6日香河MODIS观测资料进行反演,并将反演结果与AERONET (AErosol RObotic NETwork) 站点资料进行对比,以检验算法的适用性和精度。对比结果显示:该算法在太湖的反演结果与AERONET太湖站反演结果对比的标准偏差为0.429,而MODIS卫星AOD产品与AERONET太湖站反演结果对比的标准偏差为0.693;相应在香河的两种反演结果与地面观测对比的标准偏差分别为0.493和0.542。该算法的反演误差小于MODIS现行算法,反演结果合理,具有较好的适用性,说明这种方法在这两个区域具有更高的反演精度。  相似文献   

14.
用MODIS反演北京城市地区地表反照率精度以及算法改进   总被引:3,自引:2,他引:1  
MODIS(MODerate-resolution Imaging Spectroradiometer)地表反照率的精度在乡村地区已经得到了检验,但是至今没有在城市地区的有关研究。地表反照率的精度在很大程度上取决于大气订正的精度,作者利用2002年以来的北京AERONET(国际气溶胶检测网络)站点Cimel气溶胶观测资料对反射率进行大气订正,通过对比来评价MODIS地表反照率算法中大气订正的精度。结果发现,MODIS大气订正在蓝光波段具有明显的过度订正现象,MODIS大气订正后地表反射率平均偏低0.03。MODIS地表反照率在冬季有约75%的缺测,这是因为冬季严重的空气污染使得MODIS云检测得到晴空观测较少。MODIS使用三参数双向反射率函数(BRDF)要求16天以内至少有3次以上的晴空观测(MODIS算法中要求7次)。通过分析MODIS反演得到的三参数,发现虽然它们的绝对值具有明显的季节变化,但是它们的比值是十分稳定的,这样使BRDF函数降低到只需要一个参数,有效降低了对晴空观测次数的要求,这一思想可以应用到热带等晴空日数较少的地区。  相似文献   

15.
PARASOL (Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Ob- servations from a Lidar) multi-channel and mul- ti-directional polarized data for different aerosol types were compared. The PARASOL polarized radiance data at 490 nm, 670 nm, and 865 nm increased with aerosol optical thickness (AOT) for fine-mode aerosols; however, the polarized radiances at 490 nm and 670 nm decreased as AOT increased for coarse dust aerosols. Thus, the vari- ation of the polarized radiance with AOT can be used to identify fine or coarse particle-dominated aerosols. Polar- ized radiances at three wavelengths for fine- and coarse-mode aerosols were analyzed and fitted by linear regression. The slope of the line for 670 nm and 490 nm wavelength pairs is less than 0.35 for dust aerosols. However, the value for fine-mode aerosols is greater than 0.60. The Support Vector Machine method (SVM) based on 12 vector features was used to discriminate clear sky, coarse dust aerosols, fine-mode aerosols, and cloud. Two cases were given and validated by AErosol RObotic NETwork (AERONET) measurements, MODIS (Mod- erate Resolution Imaging Spectroradiometer) FMF (Fine Mode Fraction at 550 nm) images, PARASOL RGB (Red Green Blue) images, and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) VFM (Vertical Feature Mask) data.  相似文献   

16.
AMethodforSpaceborneSyntheticRemoteSensingofAtmosphericAerosolOpticalDepthandVegetationReflectance①QiuJinhuan(邱金桓)Instituteof...  相似文献   

17.
Summary The uncertainty in aerosol size distributions is a main source of errors in aerosol optical thickness determined from satellite measurements. To reduce the errors resulting from the uncertainty in aerosol size distributions, we have performed sensitivity analyses. It is found the errors resulting from the uncertainty in aerosol size distribution can be considerably reduced by using the Junge power law to approximate the aerosol size distribution in an actual atmosphere, if the exponent value is determined at the same time. An iterative algorithm is then developed for the simultaneous determination of aerosol optical thickness and the exponent of the Junge power law over ocean areas from the upwelling radiances measured in AVHRR visible and near infrared channels. A number of numerical experiments are carried out to investigate the validity of the Junge power law approximation by assuming the aerosol size distributions in an actual atmosphere are bimodal with different mode parameters, and by using the actual aerosol size distributions determined at several places by Kaufman et al. (1994). The results show that the errors in determined aerosol optical thickness resulting from the Junge power law approach are significantly reduced. The iterative algorithm is investigated further by comparing the aerosol optical thickness deduced from satellite measurement with that observed by a sun photometer. Received October 10, 2001 Revised December 28, 2001  相似文献   

18.
Various algorithms have recently been developed in order to retrieve the aerosol optical thickness (AOT) at continental scales. However, they are, to some extent, subject to large uncertainties resulting from some necessary physical assumptions on land surface anisotropy and level of brightness. In fact, disentangling aerosol and surface signals contained in the top of atmosphere (TOA) radiance received at the satellite level are a matter of difficulty because a single sensor itself cannot gather all required spatial, temporal, spectral and angular information. In particular, each instrument yields limited scanning configuration due to its platform's orbital characteristics. In this regard, a synergetic approach is presented which merges Advanced Along-Track Scanning Radiometer (AATSR) TOA radiances and the MODerate resolution Imaging Spectroradiometer (MODIS) Bi-directional Reflectance Distribution Function (BRDF)/Albedo Model Parameters Product for the retrieval of AOT at 0.55, 0.66, and 0.87 µm wavelengths over non-Lambertian land surface at a 5 km spatial resolution. In this approach, BRDF products serve to assess the surface reflectance in the AATSR geometry as a boundary layer. The peculiarity of the approach is that no specific assumption is required about the spectral characteristics of land surface, thus allowing for a quantitative retrieval of aerosol particles over any arbitrary land unit in virtue of combining forward and nadir AATSR observations. We obtain on average differences within 0.1τ compared to in situ AErosol RObotic NETwork (AERONET) measurements and 36 retrievals corresponding to 27 January, 12 February, 16 March, 28 May, 26 June, and 21 July 2006, respectively, over the city of Beijing in China. Pearson's correlation coefficient is 0.94 and 0.96 for nadir and forward AATSR, respectively. These suggest that AOT retrieval over land is indeed feasible by taking benefit of the validated MODIS BRDF. Besides, the first results indicate that the AATSR retrievals might be used to evaluate the spectral behaviour of the AOT.  相似文献   

19.
Measurements of the polarisation state of the atmosphere were performed at Tenerife in June–July 1997, in the framework of ACE‐2 (second Aerosol Characterization Experiment), by 2 ground‐based instruments: RefPol (a LOA prototype) which took measurements at 445, 665, 870, 1610 nm in the solar principal plane; and an automatic CIMEL (CE 318) sun/sky‐photometer which measured polarised radiation at 870 nm in the same observational geometry. Measurements acquired during the campaign, as well as AERONET (AErosol RObotic NETwork) measurements acquired at the sites of Cape Verde and M'Bour, are processed with an algorithm determining the polarised single‐scattering sky‐radiance due to aerosols, directly proportional to the aerosol polarised phase function (representing the probability to scatter polarised radiation in the direction of the scattering angle). A good correlation between the Ångström exponent α, representing the spectral dependence of the extinction measurements, and the polarised phase function is observed on each set of data. The uncertainty of retrievals at 445 nm makes the determination of the spectral dependence of polarisation inconclusive but does not prevent confirming the dependence of the aerosol polarised phase function on α, at all wavelengths. An Ångström exponent of 1 corresponds to a polarised phase function of around 0.1 (±0.04), at 870 nm and at a scattering angle of 60°. For α between 0 and 0.4, the average value of the polarised phase function is 0.05. The correlation shows that polarisation is more sensitive to small particles than to large particles. The discrepancy between retrievals and Mie calculations from an AERONET size distribution, inverted from Izaña measurements acquired during a dust event, suggests the presence of small particles, not detected by total sky‐radiance measurements.  相似文献   

20.
The interaction of the Aretic winter aerosol (Arctic haze) with solar radiation produces changes in the radiation field that result in the enhancement of scattering and absorption processes which alter the energy balance and solar energy distribution in the Arctic atmosphere-surface system. During the second Arctic Gas and Aerosols Sampling Project (AGASP II) field experiment, we measured radiation parameters using the NOAA WP-3D research aircraft as a platform. State-of-the-art instrumentation was used to measure in situ the absorption of solar radiation by the Arctic atmosphere during severe haze events. Simultaneously with the absorption measurements, we determined optical depths, and total, direct, and scattered radiation fields. All optical measurements were made at spectral bands centered at 412, 500, 675, and 778 nm and with a bandpass of 10 nm. With this selection of spectral regions we concentrated on the measurement of the radiative effects of the aerosol excluding most of the contributions by the gaseous components of the atmosphere. An additional measurement performed during these experiments was the determination of total solar spectrum fluxes. The experimentally determined parameters were used to define an aerosol model that was employed to deduce the absorption by the aerosols over the full solar spectrum and to calculate atmospheric heating rate profiles. The analyses summarized above allowed us to deduce the magnitude of the change in some important parameters. For example, we found changes in instantaneous heating rate of up to about 0.6 K/day. Besides the increased absorption (30 to 40%) and scattering of radiation by the atmosphere, the haze reduces the surface absorption of solar energy by 6 to 10% and the effective planetary albedo over ice surfaces by 3 to 6%. The vertical distribution of the absorbing aerosol is inferred from the flux measurements. Values for the specific absorption of carbon are found to be around 6 m2/g for externally mixed aerosol and about 11.7 m2/g for internally mixed aerosol. A complete study of the radiative effects of the Arctic haze should include infrared measurements and calculations as well as physics of the ice, snow, and water surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号