首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Below-cloud aerosol scavenging is generally estimated from field measurements using advanced instruments that measure changes in aerosol distributions with respect to rainfall. In this study, we discuss various scavenging mechanisms and scavenging coefficients from past laboratory and field measurements. Scavenging coefficients derived from field measurements (representing natural aerosols scavenging) are two orders higher than that of theoretical ones for smaller particles (Dp < 2 μm). Measured size-resolved scavenging coefficients can be served as a better option to the default scavenging coefficient (e.g. a constant of 10?4 s?1 for all size of aerosols, as used in the CALPUFF model) for representing below-cloud aerosol scavenging. We propose scavenging correction parameter (CR) as an exponential function of size-resolved scavenging coefficients, winds and width in the downwind of the source–receptor system. For a wind speed of 3 m s?1, CR decrease with the width in the downwind for particles of diameters Dp < 0.1 μm but CR does not vary much for particles in the accumulation mode (0.1 < Dp < 2 μm). For a typical urban aerosol distribution, assuming 3 m s?1 air-flow in the source–receptor system, 10 km downwind width, 2.84 mm h?1 of rainfall and using aerosol size dependent scavenging coefficients in the CR, scavenging of aerosols is found to be 16% in number and 24% in volume of total aerosols. Using the default scavenging coefficient (10?4 s?1) in the CALPUFF model, it is found to be 64% in both number and volume of total aerosols.  相似文献   

2.
《Atmospheric Research》2009,91(2-4):195-202
We present results of direct aerosol radiative forcing over a French Mediterranean coastal zone based on one year of continuous observations of aerosol optical properties during 2005–2006. Monthly-mean aerosol optical depth at 440 nm ranged between 0.1 and 0.34, with high Angstrom coefficient (α > 1.2). The single scattering albedo (at 525 nm) estimated at the surface ranged between 0.7 and 0.8, indicating significant absorption. The presence of aerosols over the Mediterranean zone during summer decreases the shortwave radiation reaching the surface by as much as 26 ± 3.9 W m 2, and increases the top of the atmosphere reflected radiation by as much as 5.2 ± 1.0 W m 2. The shortwave atmospheric absorption translates to an atmospheric heating of 2.5 to 4.6 K day 1. Concerted efforts are needed for investigating the possible impact of the increase in heating rate on the maintenance of heat-waves frequently occurring over this coastal region during summer time.  相似文献   

3.
近年来华东地区大气气溶胶的时空特征   总被引:4,自引:1,他引:3  
利用2000年2月—2008年12月的AERONET(AErosol RObotic NETwork)地基观测数据对MODIS/TERRA Collection 005气溶胶光学厚度(aerosol optical thickness;AOT)在华东区域的适用性进行了验证,并利用验证后的MODIS气溶胶产品对华东区域气溶胶光学厚度和尺度分布特征进行了分析。结果表明,(1)通过验证比较,MODIS的AOT在华东区域与AERONET站陆基观测到的AOT具有非常好的一致性,满足美国NASA的设计要求。(2)华东区域的气溶胶光学厚度存在明显的时空分布特征。时间上,在春季和夏季达到最大,而在秋季和冬季最小,表现出明显的季节变化规律。空间上,气溶胶光学厚度受地形影响明显。其高值区主要分布在平原地区,而低值区主要在海拔较高的山区。(3)该区域的气溶胶尺度分布也存在显著的变化特征。在冬、春由于沙尘输送的影响,整个华东区域气溶胶粒子的尺度都比较大,主要以自然生成的沙尘粒子为主。而在夏、秋季由于夏季风和降水的影响,气溶胶粒子的尺度都比较小,以工业排放的人为气溶胶粒子为主。  相似文献   

4.
《Atmospheric Research》2009,91(2-4):253-263
A high-volume cascade impactor, equipped with a PM10 inlet, was used to collect size-segregated aerosol samples during the summer of 2004 at two Portuguese locations: a coastal-rural area (Moitinhos) and an urban area (Oporto). Concentrations of airborne particulate matter (PM), total carbon (TC), organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were determined for the following particle size ranges: < 0.49, 0.49–0.95, 0.95–3.0, and 3.0–10 µm. The total PM mass concentrations at the urban and coastal-rural sites ranged from 22.8 to 79.6 μg m 3 and 19.9 to 28.2 μg m 3, respectively, and more than 56% of the total aerosol mass was found in the fractions below 3.0 μm. At both locations the highest concentrations of OC and EC were found in the submicrometer size range. The regional variability for the OC and EC concentrations, with the highest concentrations being found in the urban area, was related to the contribution of local primary sources (mostly traffic emissions). It was also verified an enrichment of the small size particles in WSOC, representing on average 37.3(± 12.4)% and 59.7(± 18.0)% of OC in the very fine aerosol at the coastal-rural and urban areas, respectively. The amount of secondary OC calculated by the minimum OC/EC ratio method indicates that secondary organic aerosol formation was important throughout the study at both sites. The obtained results suggest that long-range transport and favourable summer conditions for photochemical oxidation are key factors determining secondary OC formation in the coastal-rural and urban areas. The ultraviolet absorption properties of the chromophoric constituents of the WSOC fractions were also different among the different particle size ranges and also between the two sampling locations, thus suggesting the strong impact of the diverse emission sources into the composition of the size-segregated organic aerosol.  相似文献   

5.
中国中东部MODIS与MISR气溶胶光学厚度的对比   总被引:5,自引:2,他引:3  
张莹  孙照渤 《气象科学》2010,30(1):48-54
Terra/MODIS前一版本C4和最新版本C5的气溶胶光学厚度(AOT Aerosol OpticalThickness)数据,以及搭载于同一卫星上的Terra/MISR气溶胶光学厚度数据,在中国中东部地区存在差异。本文利用AERONET气溶胶光学厚度数据对以上三种资料验证的结果表明:MODIS气溶胶算法改进之后得到的C5 AOT数据较C4精度确有很大提高,且优于MISR的AOT数据。  相似文献   

6.
In this study, 24-h PM2.5 samples were collected using Harvard Honeycomb denuder/filter-pack system during different seasons in 2006 and 2007 at an urban site in Guangzhou, China. The particles collected in this study were generally acidic (average strong acidity ([H+]) ~ 70 nmol m? 3). Interestingly, aerosol sulfate was not fully neutralized in the ammonia-rich atmosphere (NH3 ~ 30 ppb) and even when NH4+]/[SO42?] was larger than 2. Consequently, strong acidity ([H+]) as high as 170 nmol m? 3 was observed in these samples. The kinetic rate of neutralization of acidity (acidic sulfate) by ambient ammonia was significantly higher than the rate of formation of ammonium nitrate involving HNO3 and NH3 for [NH4+]/[SO42?]  1.5 and much lower for NH4+]/[SO42?] > 1.5. Therefore, higher nitrate principally formed via homogeneous gas phase reactions involving ammonia and nitric acid were observed for [NH4+]/[SO42?] > 1.5. However, little nitrate, probably formed via heterogeneous processes e.g. reaction of HNO3 with sea salt or crustal species, was observed for [NH4+]/[SO42?]  1.5. These demonstrate a clear transition in the pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42?] = 1.5 and evidently explain the observed high acidity due to the unneutralized sulfate in the ammonium-rich aerosol (NH4+]/[SO42?] > 1.5). In fact, the measured acidity was almost similar to the excess acid defined as the acid that remains at [NH4+]/[SO42?] = 1.5 due to the un-neutralized fraction of sulfate ([H+] = 0.5[SO42?]). The presence of high excess acid and ammonium nitrate significantly lowered the deliquescence relative humidity of ammonium sulfate (from 80% to 40%) in the ammonium-rich samples.  相似文献   

7.
中国区域MODIS陆上气溶胶光学厚度产品检验   总被引:15,自引:2,他引:13       下载免费PDF全文
以我国MODIS共享网站积累的MODIS L1B数据和美国威斯康辛大学提供的IMAPP软件包气溶胶产品软件为基础, 经过产品运行本地化改进处理, 在国家卫星气象中心建立了气溶胶产品业务化生成和发布机制。为支持气溶胶遥感产品算法改进以及潜在用户对产品的合理应用, 给出对国家卫星气象中心运行的MODIS气溶胶遥感产品质量检验分析结果。利用2005年1月— 2007年5月AERONET地基气溶胶监测网的L2.0级气溶胶光学厚度产品作为真值, 用它匹配MODIS陆上气溶胶光学厚度产品开展检验。检验结果表明:以卫星过境前后30min地基观测时间平均值匹配地基站点位置10 km半径范围内的卫星反演结果空间平均值开展检验, 总体样本的气溶胶光学厚度均方根误差约为0.25;满足产品误差要求 (±0.05±0.20τ) 的样本占总样本数的44%; 气溶胶光学厚度反演结果精度具有季节和地域差异, 干季(秋、冬、春)的气溶胶光学厚度误差较小, 而雨季气溶胶光学厚度误差较大, 云是雨季气溶胶光学厚度反演结果误差较大的主要影响因素。  相似文献   

8.
《Atmospheric Research》2009,91(2-4):243-252
Aerosol size distributions were measured with Micro Orifice Uniform Deposit Impactor (MOUDI) cascade impactors at the rural Angiola and urban Fresno Supersites in California's San Joaquin Valley during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) winter campaign from December 15, 2000 to February 3, 2001. PM2.5 filter samples were collected concurrently at both sites with Sequential Filter Samplers (SFS). MOUDI nitrate (NO3) concentrations reached 66 μg/m3 on January 6, 2001 during the 1000–1600 PST (GMT-8) period. Pair-wise comparisons between PM2.5 MOUDI and SFS concentrations revealed high correlations at the Angiola site (r > 0.93) but more variability (r < 0.85) at the Fresno site for NO3, sulfate (SO4=), and ammonium (NH4+). Correlations were higher at Fresno (r > 0.87) than at Angiola (r < 0.7) for organic carbon (OC), elemental carbon (EC), and total carbon (TC). NO3 and SO4= size distributions in Fresno were multi-modal and wider than the uni-modal distributions observed at Angiola. Geometric mean diameters (GMD) were smaller for OC and EC than for NO3 and SO4= at both sites. OC and EC were more concentrated on the lowest MOUDI stage (0.056 µm) at Angiola than at Fresno. The NO3 GMD increased from 0.97 to 1.02 µm as the NO3 concentration at Angiola increased from 43 to 66 µg m 3 during a PM2.5 episode from January 4–7, 2001. There was a direct relationship between GMD and NO3 and SO4= concentrations at Angiola but no such relationships for OC or EC. This demonstrates that secondary aerosol formation increases both concentration and particle size for the rural California environment.  相似文献   

9.
In this study, total suspended particles (TSP) and size-segregated atmospheric aerosol samples were measured on Qianliyan Island in the Yellow Sea in spring (April–May), summer (July–August) and fall (October–November) of 2006 and in water (January–February) of 2007. The mass concentration of the TSP varied from 75.6 to 132.0 μg/m3. The average concentration were 9.37 ± 7.56 μg/m3 and 5.32 ± 4.25 μg/m3 for nitrate and ammonium in the TSP, respectively. TSP concentration showed a significant correlation with those of nitrate (n = 27, r = 0.73) and ammonium (n = 27, r = 0.60). The mass-size distribution of atmospheric particles exhibited two modes with an accumulation mode at 0.43–1.1 μm and a coarse mode at 3.3–4.7 μm throughout the sampling months. A bi-modal size distribution of nitrate in concentration occurred in the April–May, October–November and January–February, but a uni-modal size distribution occurred in the August. The uni-modal size distribution of ammonium at 0.43–0.65 μm was observed throughout the sampling months. The average of inorganic nitrogen in mass concentration accounted for 4.0% of the total mass of aerosol particles while ammonium-N was the dominant fraction of TIN (Total Inorganic Nitrogen), contributing to 62–71% of the TIN.  相似文献   

10.
Urban growth is increasing the demand for freshwater resources, yet surprisingly the water sources of the world's large cities have never been globally assessed, hampering efforts to assess the distribution and causes of urban water stress. We conducted the first global survey of the large cities’ water sources, and show that previous global hydrologic models that ignored urban water infrastructure significantly overestimated urban water stress. Large cities obtain 78 ± 3% of their water from surface sources, some of which are far away: cumulatively, large cities moved 504 billion liters a day (184 km3 yr−1) a distance of 27,000 ± 3800 km, and the upstream contributing area of urban water sources is 41% of the global land surface. Despite this infrastructure, one in four cities, containing $4.8 ± 0.7 trillion in economic activity, remain water stressed due to geographical and financial limitations. The strategic management of these cities’ water sources is therefore important for the future of the global economy.  相似文献   

11.
Identifying the sources of reactive nitrogen (N) and quantifying their contributions to groundwater nitrate concentrations are critical to understanding the dynamics of groundwater nitrate contamination. Here we assessed groundwater nitrate contamination in China using literature analysis and N balance calculation in coupled human and natural systems. The source appointment via N balance was well validated by field data via literature analysis. Nitrate was detected in 96% of groundwater samples based on a common detection threshold of 0.2 mg N L?1, and 28% of groundwater samples exceeded WHO's maximum contaminant level (10 mg N L?1). Groundwater nitrate concentrations were the highest beneath industrial land (median: 34.6 mg N L?1), followed by urban land (10.2 mg N L?1), cropland (4.8 mg N L?1), and rural human settlement (4.0 mg N L?1), with the lowest found beneath natural land (0.8 mg N L?1). During the period 1980–2008, total reactive N leakage to groundwater increased about 1.5 times, from 2.0 to 5.0 Tg N year?1, in China. Despite that the contribution of cropland to the total amount of reactive N leakage to groundwater was reduced from 50 to 40% during the past three decades, cropland still was the single largest source, while the contribution from landfill rapidly increased from 10 to 34%. High reactive N leakage mainly occurred in relatively developed agricultural or urbanized regions with a large population. The amount of reactive N leakage to groundwater was mainly driven by anthropogenic factors (population, gross domestic product, urbanization rate and land use type). We constructed a high resolution map of reactive N source appointment and this could be the basis for future modeling of groundwater nitrate dynamics and for policy development on mitigation of groundwater contamination.  相似文献   

12.
中国海域MODIS气溶胶光学厚度检验分析   总被引:1,自引:1,他引:0  
利用MODIS的Collection 005版本(MODIS—C005)数据的气溶胶光学厚度(AOT)产品,与我国海域多个AERONET观测站点太阳光度计测量得到的AOT结果进行了对比分析,对MODIS_C005数据的气溶胶产品在我国海域进行了验证,并对验证方法进行了探讨。结果表明,MODIS—C005的AOT在我国海域与AERONET站陆基观测到的AOT具有非常好的一致性,相关系数达到0.9以上。通过尝试不同的验证方法,发现验证数据的空间采样窗口大小的选择对于验证效果具有较大的影响,在中国海域可以使用30km×30km的空间采样窗口。通过MODIS—C005的AOT与AERONET站观测值在中国各个海区的比较,证明MODIS—C005的AOT在550nm满足美国NASA的设计要求,误差控制在±0.05±0.057τ,适用于我国海域,可以用于中国海域的气象和海洋等科学研究。  相似文献   

13.
The results of the first large scale chemical characterization of PM10 and PM2.5 at three different sites in the urban city of Beirut, Lebanon, are presented. Between May 2009 and April 2010 a total of 304 PM10 and PM2.5 samples were collected by sampling every sixth day at three different sites in Beirut. Observed mass concentrations varied between 19.7 and 521.2 μg m? 3 for PM10 and between 8.4 and 72.2 μg m? 3 for PM2.5, respectively. Inorganic concentrations accounted for 29.7–35.6 μg m? 3 and 46.0–53.5 μg m? 3 of the total mass of PM10 and PM2.5, respectively. Intra-city temporal and spatial variations were assessed based on the study of three factors: correlation coefficients (R) for PM and chemical components, coefficient of divergence (CODs), and source apportionment using positive matrix factorization (PMF). Based on R and COD of PM concentrations, the three sites appear homogeneous. However, when individual elements were compared, heterogeneity among sites was found. This latter was attributed to the variability in the percent contribution of biogenic and local anthropogenic source factors such as traffic related sources and dust resuspension. Other factors included the proximity to the Mediterranean sea, the population density and the topographical structure of the city. Hence, despite its small size (20.8 km2), one PM monitoring site does not reflect an accurate PM level in Beirut.  相似文献   

14.
15.
《Atmospheric Research》2009,91(2-4):159-169
Characterizations of urban and regional sources of particulate matter (PM) were performed in the Milan area (North of Italy) during Föhn and stagnant (non-Föhn) conditions. The measurements were performed at two different places: in an urban area North of Milan (Bresso) and in a regional area at the EMEP-GAW station in Ispra (about 65 km NW from Milan) during the winter periods of the years 2002–2007. Particle size distributions and chemical bulk analysis of aerosols are combined with single particle mass spectrometry to obtain information about the chemical content of the particles and their mixing state. Föhn conditions are characterized by extremely clean background air from which background aerosol is scavenged, and consequently local sources (here defined as sources between the sampling sites and the mountain range top about 100–150 km away depending on the wind direction) determine the aerosol properties.It was observed that during Föhn events the accumulation mode in the size range 50 nm < d < 300 nm practically disappears and that the size fraction below 50 nm dominates the total number distribution. The significant change in the number size distribution and the large decrease in PM10 mass during Föhn events are accompanied by a significant change in the chemical composition of the particles. Results from bulk chemical analysis showed high amounts of carbonaceous compounds and very low concentrations of ammonium nitrate (as indicator for secondary chemistry) during Föhn episodes, in contrast to stagnant conditions, when secondary components are dominating the aerosol composition. Single particle measurements confirm the high contribution of carbonaceous compounds in locally emitted particles.It was concluded that particles that originated in the urban area come mainly from combustion processes, especially direct traffic emissions, domestic heating and industrial activities, whereas the regionally emitted particles are different with much less traffic contribution.We estimate that under prevailing (non-Föhn) winter conditions, about 50–65% of the aerosol mass load in the city of Milan are caused by local emissions, and about 35–50% come from regional background. This finding suggests that in order to improve air quality in a big city like Milan, it is important to combine local traffic restriction interventions with other long-term regional scale air-quality-measures.  相似文献   

16.
The chemical mass balance model was applied to atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in Istanbul, Turkey. A total of 326 airborne samples were collected and analyzed for 16 PAHs and Total Suspended Particles (TSP) in the September 2006–December 2007 period at three monitoring stations: Yildiz, DMO (urban sites) and Kilyos (rural site). The total average PAH concentrations were 100.66 ± 61.26, 84.63 ± 46.66 and 25.12 ± 13.34 ng m?3 and the TSP concentrations were 101.16 ± 53.22, 152.31 ± 99.12, 49.84 ± 18.58 μg m?3 for Yildiz, DMO and Kilyos stations respectively. At all the sites, the lighter compounds were the most abundant, notably Nap, AcPy and PA. The average correlation values between TSP and total heavier PAH were greater than 0.5 for Yildiz and DMO stations. The patterns of PAH and TSP concentrations showed spatial and temporal variations. PAH concentrations were evaluated for the PAH contribution from four sources (diesel engines, gasoline engines, natural gas combustion, and coal + wood burning). Vehicle emissions appear to be the major source with contributions of 61.2%, 63.3% and 54.1% for Yildiz, DMO and Kilyos stations respectively. Seasonal and yearly variations had different trends for all sites.  相似文献   

17.
《Atmospheric Research》2010,95(4):694-703
The German Weather Service (DWD) has two non-hydrostatic operational weather prediction models with different spatial resolution and precipitation parametrisations. The coarser COSMO-EU model has a spatial resolution of 7 km, whereas the higher-resolution COSMO-DE model has a gridspace of 2.8 km and explicitly resolves deep convection. To improve the numerical weather prediction (NWP) models it is necessary to understand precipitation processes. A central goal is the statistical evaluation of precipitation forecasts with dynamic parameters. Here, the Dynamic State Index (DSI) is used as a dynamic threshold parameter. The DSI theoretically describes the change of atmospheric flow fields as deviations from a stationary adiabatic solution of the primitive equations (Névir, 2004). For seasonal area means the DSI shows a remarkably high correlation with the precipitation forecasts provided by the COSMO-DE model. This is especially the case for the summer of 2007. The same analysis has been performed with the COSMO-EU forecast data and the results were compared with those from the COSMO-DE model. Moreover, an independent precipitation analysis, with a resolution corresponding to 7 km and 2.8 km, has been compared with respect to modelled precipitation and the DSI. In addition, correlations between the DSI and modelled as well as observed precipitation as a function of the forecast time for the different grid resolutions are also presented. The results show, that after 12 h, the correlation of the persistence forecast with the DSI reaches two thirds of the initial value. Thus, the DSI offers itself as a new dynamic forecast tool for precipitation events.  相似文献   

18.
A mooring equipped with 200 high-resolution temperature sensors between 6 and 404 m above the bottom was moored in 1890 m water depth above a steep, about 10° slope of Mount Josephine, NE-Atlantic. The sensors have a precision of less than 0.5 mK. They are synchronized via induction every 4 h so that the 400 m range is measured to within 0.02 s, every 1 s. Thin cables and elliptical buoyancy assured vertical mooring motions to be smaller than 0.1 m under maximum 0.2 m s−1 current speeds. The local bottom slope is supercritical for semidiurnal internal tides by a factor of two. Exploring a one-month record in detail, the observations show: 1/semidiurnal tidal dominance in variations of dissipation rate ε, eddy diffusivity Kz and temperature, but no significant correlation between the records of ε and total kinetic energy, 2/a variation with time over four orders of magnitude of 100-m vertically averaged ε, 3/a local minimum in density stratification between 50 and 100 m above the bottom, 4/a gradual decrease in daily or longer averaged ε and Kz by one order of magnitude over a vertical distance of 250 m, upwards from 150 m above the bottom, 5/monthly mean values of <[ε]> = 2 ± 0.5 × 10−7 m2 s−3, <[Kz]> = 8 ± 3 × 10−3 m2 s−1 averaged over the lower 150 m above the bottom.  相似文献   

19.
Various algorithms have recently been developed in order to retrieve the aerosol optical thickness (AOT) at continental scales. However, they are, to some extent, subject to large uncertainties resulting from some necessary physical assumptions on land surface anisotropy and level of brightness. In fact, disentangling aerosol and surface signals contained in the top of atmosphere (TOA) radiance received at the satellite level are a matter of difficulty because a single sensor itself cannot gather all required spatial, temporal, spectral and angular information. In particular, each instrument yields limited scanning configuration due to its platform's orbital characteristics. In this regard, a synergetic approach is presented which merges Advanced Along-Track Scanning Radiometer (AATSR) TOA radiances and the MODerate resolution Imaging Spectroradiometer (MODIS) Bi-directional Reflectance Distribution Function (BRDF)/Albedo Model Parameters Product for the retrieval of AOT at 0.55, 0.66, and 0.87 µm wavelengths over non-Lambertian land surface at a 5 km spatial resolution. In this approach, BRDF products serve to assess the surface reflectance in the AATSR geometry as a boundary layer. The peculiarity of the approach is that no specific assumption is required about the spectral characteristics of land surface, thus allowing for a quantitative retrieval of aerosol particles over any arbitrary land unit in virtue of combining forward and nadir AATSR observations. We obtain on average differences within 0.1τ compared to in situ AErosol RObotic NETwork (AERONET) measurements and 36 retrievals corresponding to 27 January, 12 February, 16 March, 28 May, 26 June, and 21 July 2006, respectively, over the city of Beijing in China. Pearson's correlation coefficient is 0.94 and 0.96 for nadir and forward AATSR, respectively. These suggest that AOT retrieval over land is indeed feasible by taking benefit of the validated MODIS BRDF. Besides, the first results indicate that the AATSR retrievals might be used to evaluate the spectral behaviour of the AOT.  相似文献   

20.
Concentrations and flux densities of methane were determined during a Lagrangian study of an advective filament in the permanent upwelling region off western Mauritania. Newly upwelled waters were dominated by the presence of North Atlantic Central Water and surface CH4 concentrations of 2.2 ± 0.3 nmol L−1 were largely in equilibrium with atmospheric values, with surface saturations of 101.7 ± 14%. As the upwelling filament aged and was advected offshore, CH4 enriched South Atlantic Central Water from intermediate depths of 100–350 m was entrained into the surface mixed layer of the filament following intense mixing associated with the shelf break. Surface saturations increased to 198.9 ± 15% and flux densities increased from a mean value over the shelf of 2.0 ± 1.1 μmol m−2 d−1 to a maximum of 22.6 μmol m−2 d−1. Annual CH4 emissions for this persistent filament were estimated at 0.77 ± 0.64 Gg which equates to a maximum of 0.35% of the global oceanic budget. This raises the known outgassing intensity of this area and highlights the importance of advecting filaments from upwelling waters as efficient vehicles for air-sea exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号