首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Decadal Sahelian rainfall variability was mainly driven by sea surface temperatures (SSTs) during the twentieth century. At the same time SSTs showed a marked long-term global warming (GW) trend. Superimposed on this long-term trend decadal and multi-decadal variability patterns are observed like the Atlantic Multidecadal Oscillation (AMO) and the inter-decadal Pacific Oscillation (IPO). Using an atmospheric general circulation model we investigate the relative contribution of each component to the Sahelian precipitation variability. To take into account the uncertainty related to the use of different SST data sets, we perform the experiments using HadISST1 and ERSSTv3 reconstructed sets. The simulations show that all three SST signals have a significant impact over West Africa: the positive phases of the GW and the IPO lead to drought over the Sahel, while a positive AMO enhances Sahel rainfall. The tropical SST warming is the main cause for the GW impact on Sahel rainfall. Regarding the AMO, the pattern of anomalous precipitation is established by the SSTs in the Atlantic and Mediterranean basins. In turn, the tropical SST anomalies control the impact of the IPO component on West Africa. Our results suggest that the low-frequency evolution of Sahel rainfall can be interpreted as the competition of three factors: the effect of the GW, the AMO and the IPO. Following this interpretation, our results show that 50% of the SST-driven Sahel drought in the 1980s is explained by the change to a negative phase of the AMO, and that the GW contribution was 10%. In addition, the partial recovery of Sahel rainfall in recent years was mainly driven by the AMO.  相似文献   

2.
内蒙古赤峰地区沙尘暴发生特点及成因   总被引:4,自引:2,他引:4  
尤莉  程玉琴  张少文  王国勤 《气象》2004,30(5):38-41
用 1 2个观测站的 1 96 1~ 2 0 0 0年 4 0年的沙尘暴、大风日数和降水量等观测资料 ,分析了内蒙古赤峰地区沙尘暴发生的地理分布、年际和年代际变化特征等。结果表明 :赤峰地区近 4 0年来沙尘暴呈减少趋势 ,其特殊的地形特征和多风的气候特点是沙尘暴多发的主要原因。  相似文献   

3.
马晓波 《高原气象》1993,12(4):450-457
本文利用蒙古25个台站的52年逐月降水量资料,研究了蒙古旱变化和降水趋势。结果表明:蒙古平均年降水量为216.1mm,分布由南向北增加,东西部少,中部多,南部和西部为干旱区,中部和东部为半干旱区,与我国干旱半干旱区是一个整体,降水主要集中在夏季;年降水量变率为15.6%-38.0%。蒙古旱涝都很频繁,旱的频率高于涝的频率,而大涝的频率是大旱的两倍。年降水量服从正态分布,并有准3年和11-14年周期  相似文献   

4.
A near-global grid-point nudging of the Arpege-Climat atmospheric General Circulation Model towards ECMWF reanalyses is used to diagnose the regional versus remote origin of the summer model biases and variability over West Africa. First part of this study revealed a limited impact on the monsoon climatology compared to a control experiment without nudging, but a significant improvement of interannual variability, although the amplitude of the seasonal anomalies remained underestimated. Focus is given here on intraseasonal variability of monsoon rainfall and dynamics. The reproducible part of these signals is investigated through 30-member ensemble experiments computed for the 1994 rainy season, a year abnormally wet over the Sahel but representative of the model systematic biases. In the control experiment, Arpege-Climat simulates too few rainy days that are associated with too low rainfall amounts over the central and western Sahel, in line with the seasonal dry biases. Nudging the model outside Africa tends to slightly increase the number of rainy days over the Sahel, but has little effect on associated rainfall amounts. However, results do indicate that a significant part of the monsoon intraseasonal variability simulated by Arpege-Climat is controlled by lateral boundary conditions. Parts of the wet/dry spells over the Sahel occur in phase in the 30 members of the nudging experiment, and are therefore embedded in larger-scale variability patterns. Inter-member spread is however not constant across the selected summer season. It is partly controlled by African Easterly Waves, which show dissimilar amplitude from one member to another, but a coherent phasing in all members. A lowpass filtering of the nudging fields suggests that low frequency variations in the lateral boundary conditions can lead to eastward extensions of the African Easterly Jet, creating a favorable environment for easterly waves, while high frequency perturbations seem to control their phasing.  相似文献   

5.
Satellite-derived rainfall estimates and the ERA-Interim reanalysis are used to better understand cold air surge/precipitation interactions and to identify the implications for rainfall variability in the Sahel and tropical Africa on synoptic to seasonal timescales. At the synoptic timescale, cold air surges are associated with cold conditions over the eastern Sahara throughout the year due to the eastward passage of surface low pressure systems over the Mediterranean and the subsequent ridging over northern Africa. Rainfall decreases over central and eastern Africa approximately 4–5 days after the cold air first arrives in northeastern Africa. These precipitation anomalies persist for 4 or more days. At the seasonal timescale, a significant relationship between eastern Saharan low-level temperatures and rainfall in the Sahel and tropical Africa is identified, with colder conditions associated with reduced convection on the northern flank of the primary convergence zone, and vice versa. During boreal winter, the anomalous rainfall occurs over tropical Africa (0°N–8°N). During the summer, rainfall anomalies associated with cold air surges occur over the Sahel (10°N–16°N). These relationships are mediated by anomalous anticyclonic flow over northwestern Africa and western Europe. The analysis shows that cold air surges are significantly associated with summertime cooling over the Sahara, but less so during the winter.  相似文献   

6.
Global trends and patterns of drought from space   总被引:1,自引:0,他引:1  
This paper analyzes changes in areas under droughts over the past three decades and alters our understanding of how amplitude and frequency of droughts differ in the Southern Hemisphere (SH) and Northern Hemisphere (NH). Unlike most previous global-scale studies that have been based on climate models, this study is based on satellite gauge-adjusted precipitation observations. Here, we show that droughts in terms of both amplitude and frequency are more variable over land in the SH than in the NH. The results reveal no significant trend in the areas under drought over land in the past three decades. However, after investigating land in the NH and the SH separately, the results exhibit a significant positive trend in the area under drought over land in the SH, while no significant trend is observed over land in the NH. We investigate the spatial patterns of the wetness and dryness over the past three decades, and we show that several regions, such as the southwestern United States, Texas, parts of the Amazon, the Horn of Africa, northern India, and parts of the Mediterranean region, exhibit a significant drying trend. The global trend maps indicate that central Africa, parts of southwest Asia (e.g., Thailand, Taiwan), Central America, northern Australia, and parts of eastern Europe show a wetting trend during the same time span. The results of this satellite-based study disagree with several model-based studies which indicate that droughts have been increasing over land. On the other hand, our findings concur with some of the observation-based studies.  相似文献   

7.
Monerie  Paul-Arthur  Sanchez-Gomez  Emilia  Gaetani  Marco  Mohino  Elsa  Dong  Buwen 《Climate Dynamics》2020,55(9-10):2801-2821

The main focus of this study is the zonal contrast of the Sahel precipitation shown in the CMIP5 climate projections: precipitation decreases over the western Sahel (i.e., Senegal and western Mali) and increases over the central Sahel (i.e., eastern Mali, Burkina Faso and Niger). This zonal contrast in future precipitation change is a robust model response to climate change but suffers from a lack of an explanation. To this aim, we study the impact of current and future climate change on Sahel precipitation by using the Large Ensemble of the Community Earth System Model version 1 (CESM1). In CESM1, global warming leads to a strengthening of the zonal contrast, as shown by the difference between the 2060–2099 period (under a high emission scenario) and the 1960–1999 period (under the historical forcing). The zonal contrast is associated with dynamic shifts in the atmospheric circulation. We show that, in absence of a forced response, that is, when only accounting for internal climate variability, the zonal contrast is associated with the Pacific and the tropical Atlantic oceans variability. However, future patterns in sea surface temperature (SST) anomalies are not necessary to explaining the projected strengthening of the zonal contrast. The mechanisms underlying the simulated changes are elucidated by analysing a set of CMIP5 idealised simulations. We show the increase in precipitation over the central Sahel to be mostly associated with the surface warming over northern Africa, which favour the displacement of the monsoon cell northwards. Over the western Sahel, the decrease in Sahel precipitation is associated with a southward shift of the monsoon circulation, and is mostly due to the warming of the SST. These two mechanisms allow explaining the zonal contrast in precipitation change.

  相似文献   

8.
While most models project large increases in agricultural drought frequency and severity in the 21st century, significant uncertainties exist in these projections. Here, we compare the model-simulated changes with observation-based estimates since 1900 and examine model projections from both the Coupled Model Inter-comparison Project Phase 3 (CMIP3) and Phase 5 (CMIP5). We use the self-calibrated Palmer Drought Severity Index with the Penman-Monteith potential evapotranspiration (PET) (sc_PDSI_pm) as a measure of agricultural drought. Results show that estimated long-term changes in global and hemispheric drought areas from 1900 to 2014 are consistent with the CMIP3 and CMIP5 model-simulated response to historical greenhouse gases and other external forcing, with the short-term variations within the model spread of internal variability, despite that regional changes are still dominated by internal variability. Both the CMIP3 and CMIP5 models project continued increases (by 50–200 % in a relative sense) in the 21st century in global agricultural drought frequency and area even under low-moderate emissions scenarios, resulting from a decrease in the mean and flattening of the probability distribution functions (PDFs) of the sc_PDSI_pm. This flattening is especially pronounced over the Northern Hemisphere land, leading to increased drought frequency even over areas with increasing sc_PDSI_pm. Large differences exist in the CMIP3 and CMIP5 model-projected precipitation and drought changes over the Sahel and northern Australia due to uncertainties in simulating the African Inter-tropical convergence zone (ITCZ) and the subsidence zone over northern Australia, while the wetting trend over East Africa reflects a robust response of the Indian Ocean ITCZ seen in both the CMIP3 and CMIP5 models. While warming-induced PET increases over all latitudes and precipitation decreases over subtropical land are responsible for mean sc_PDSI_pm decreases, the exact cause of its PDF flattening needs further investigation.  相似文献   

9.
Damaging rainfall and rain-induced flooding occur from time to time in the drought-prone Sahel savanna zone of Niger in West Africa but official records of these events and their socioeconomic impacts do not exist. This paper utilized newspaper accounts between 1970 and 2000 to survey and illustrate the range of these flood hazards in the Sahel. During the study interval, 53 newspaper articles reported 79 damaging rainfall and flood events in 47 different communities in the Sahel of Niger. Collectively, these events destroyed 5,580 houses and rendered 27,289 people homeless. Cash losses and damage to infrastructure in only three events exceeded $4 million. Sahel residents attribute these floods to five major causes including both natural and anthropogenic, but they view the flood problem as driven primarily by land use patterns. Despite such awareness, traditional coping strategies appear inadequate for dealing with the problems in part because of significant climatic variability. Analysis of several rainfall measures indicates that the cumulative rainfall in the days prior to a heavy rain event is an important factor influencing whether or not heavy rainfall results in flooding. Thus, despite some limitations, newspaper accounts of historical flooding are largely consistent with measured climatic variables. The study demonstrates that concerted effort is needed to improve the status of knowledge concerning flood impacts and indeed other natural and human hazards in the Sahel.  相似文献   

10.
近年来世界气候异常在低纬度的表现十分突出,这就是引起大范围饥馑的热带西非的持续干旱和赤道东太平洋上增多的厄尼诺(E1—Nino)现象,本文通过分析发现,它们都和北半球太阳直接辐射自六十年代以来渐趋减少的趋势密切联系。由于1963年以来火山活动进入活跃期以及大气中人工气溶胶含量的日益增长,两者都促使北半球太阳直接辐射呈现稳定降低的趋势;夏半年减少的大陆加热量就会迫使夏季风减弱、北半球副热带高压及ITCZ均趋向偏南,从而在西非和赤道东太平洋分别促成了Sahel区的持续干旱和El—Nino现象的增多趋势。近年来我国华北盛夏雨量的减少估计也与此有关。这类气候特征且有可能在今后较长时间内继续维持。  相似文献   

11.
Summer Sahel-ENSO teleconnection and decadal time scale SST variations   总被引:5,自引:0,他引:5  
The correlation between Sahel rainfall and El Niño–Southern Oscillation (ENSO) in the northern summer has been varying for the last fifty years. We propose that the existence of periods of weak or strong relationship could result from an interaction with the global decadal scale sea surface temperature (SST) background. The main modes of SST variability have been extracted through a principal component analysis with Varimax rotation. The correlations between a July-September Sahel rainfall index and these SST modes have been computed on a 20-year running window between 1945 and 1993. The correlations with the interannual ENSO-SST mode are negative, not significant in the 1960s during the transition period from the wet climate phasis to the long-running drought in the Sahel, but then were significant since 1976. During the former period, the correlations between the Sahel rainfall index and the other SST modes (expressing mostly on quasi and multi-decadal scales) are the highest, in particular correlations with the tropical Atlantic “dipole”. Correlations between Sahel and Guinea Coast rainfall are also significantly negative. After 1970, the Sahel-Guinea Coast rainfall correlations are no longer significant, and the ENSO-SST mode becomes the only one significantly correlated with Sahel rainfall, especially due to the impact of warm events. The partial correlations between the ENSO-SST mode and the Sahel rainfall index, when the influence of the other SST modes are eliminated, are significant over all the 20-year running periods between 1945 and 1993, suggesting that this summer teleconnection could be modulated by the decadal scale SST background. The NCEP/NCAR reanalyses reproduce accurately the interannual variability of the atmospheric circulation after 1968. In particular a regional West African Monsoon Index (WAMI), combining wind speed anomalies at 925 and 200?hPa, is highly correlated with the July-September Sahel rainfall index. A warm ENSO event is associated both with an eastward mean sea level pressure gradient between the eastern tropical Pacific and the tropical Atlantic and with a northward pressure gradient along the western coast of West Africa. This pattern leads to enhanced trade winds over the tropical Atlantic and to weaker moisture advection over West Africa, consistent with a weaker monsoon system strength and a weaker Southern Hemisphere Hadley circulation. The NCEP/NCAR reanalyses do not reproduce accurately the decadal variability of the atmospheric circulation over West Africa because of artifical biases. Therefore the impact of the decadal scale pattern of the atmospheric circulation has been investigated with atmospheric general circulation model (AGCM) sensitivity experiments, by forcing the ARPEGE-Climat model with different combinations of an El Niño-like SST pattern with the pattern of the main mode of decadal scale SST variability where the hightest weights are located in the Pacific and Indian basins. AGCM outputs show that the decadal scale SST variations weakly affect Sahel rainfall variability but that they do induce an indirect effect on Sahel rainfall by enhancing the impact of the warm ENSO phases after 1980, through an increase in the fill-in of the monsoon trough and a moisture advection deficit over West Africa.  相似文献   

12.
The effects of the northeastern Eurasian snow cover on the frequency of spring dust storms in northwestern China have been examined for the period 1979–2007. Averaged over all 43 stations in northwestern China, a statistically significant relationship has been found between dust-storm frequency (DSF) and Eurasian snow-water equivalent (SWE) during spring: mean DSF of 7.4 and 3.3 days for years of high- and low SWE, respectively. Further analyses reveal that positive SWE anomalies enhance the meridional gradients of the lower tropospheric temperatures and geopotential heights, thereby strengthening westerly jets and zonal wind shear over northwestern China and western Inner Mongolia of China, the regions of major dust sources. The anomalous atmospheric circulation corresponding to the Eurasian SWE anomalies either reinforces or weakens atmospheric baroclinicity and cyclogenesis, according to the sign of the anomaly, to affect the spring DSF. This study suggests that Eurasian SWE anomalies can be an influential factor of spring DSF in northwestern China and western Inner Mongolia of China.  相似文献   

13.
Modeling the impacts of reforestation on future climate in West Africa   总被引:1,自引:0,他引:1  
This study investigates the potential impacts of reforestation in West Africa on the projected regional climate in the near two decades (2031–2050) under the SRES A1B scenario. A regional climate model (RegCM3) forced with a global circulation model (ECHAM5) simulations was used for the study. The study evaluates the capability of the regional model in simulating the present-day climate over West Africa, projects the future climate over the region and investigates impacts of seven hypothetical reforestation options on the projected future climate. Three of these reforestation options assume zonal reforestation over West Africa (i.e., over the Sahel, Savanna and Guinea), while the other four assume random reforestation over Nigeria. With the elevated GHGs (A1B scenario), a warmer and drier climate is projected over West Africa in 2031–2050. The maximum warming (+2.5°C) and drying (?2?mm?day?1) occur in the western part of the Sahel because the West Africa Monsoon (WAM) flow is stronger and deflects the cool moist air more eastward, thereby lowering the warming and drying in the eastern part. In the simulations, reforestation reduces the projected warming and drying over the reforested zones but increases them outside the zones because it influences the northward progression of WAM in summer. It reduces the speed of the flow by weakening the temperature gradient that drives the flow and by increasing the surface drag on the flow over the reforested zone. Hence, in summer, the reforestation delays the onset of monsoon flow in transporting cool moist air over the area located downwind of the reforested zone, consequently enhancing the projected warming and drying over the area. The impact of reforesting Nigeria is not limited to the country; while it lowers the warming over part of the country (and over Togo), it increases the warming over Chad and Cameroon. This study, therefore, suggests that using reforestation to mitigate the projected future climate change in West Africa could have both positive and negative impacts on the regional climate, reducing temperature in some places and increasing it in others. Hence, reforestation in West Africa requires a mutual agreement among the West African nations because the impacts of reforestation do not recognize political boundaries.  相似文献   

14.
基于1979-2001年ECMWF海平面气压(SLP)再分析资料,采用改进的气旋客观识别与追踪算法,计算分析了蒙古气旋的频数及强度,结果表明,蒙古气旋活动存在明显的季节、年际和年代际变化。1979-2001年,蒙古气旋频数减少,强度减弱。20世纪80年代中期,蒙古气旋活动最强,80年代末开始到90年代,蒙古气旋日数明显下降。此外,春季蒙古气旋出现的频数最高,冬季出现的频数最低。从80到90年代,春、夏、秋、冬四季蒙古气旋活动呈一致的波动减少趋势,其中春季变化与全年最为一致。蒙古气旋活动的年际差异也十分明显,蒙古气旋活动偏多年和偏少年对流层低层温度场距平分布存在明显差异,说明大气环流是影响气旋活动的一个重要因素。  相似文献   

15.
This article presents an overview of the land ITCZ (Intertropical Convergence Zone) over West Africa, based on analysis of NCAR–NCEP Reanalysis data. The picture that emerges is much different than the classic one. The most important feature is that the ITCZ is effectively independent of the system that produces most of the rainfall. Rainfall linked directly to this zone of surface convergence generally affects only the southern Sahara and the northern-most Sahel, and only in abnormally wet years in the region. A second feature is that the rainbelt normally assumed to represent the ITCZ is instead produced by a large core of ascent lying between the African Easterly Jet and the Tropical Easterly Jet. This region corresponds to the southern track of African Easterly Waves, which distribute the rainfall. This finding underscores the need to distinguish between the ITCZ and the feature better termed the “tropical rainbelt”. The latter is conventionally but improperly used in remote sensing studies to denote the surface ITCZ over West Africa. The new picture also suggests that the moisture available for convection is strongly coupled to the strength of the uplift, which in turn is controlled by the characteristics of the African Easterly Jet and Tropical Easterly Jet, rather than by moisture convergence. This new picture also includes a circulation feature not generally considered in most analyses of the region. This feature, a low-level westerly jet termed the African Westerly Jet, plays a significant role in interannual and multidecadal variability in the Sahel region of West Africa. Included are discussions of the how this new view relates to other aspects of West Africa meteorology, such as moisture sources, rainfall production and forecasting, desertification, climate monitoring, hurricanes and interannual variability. The West African monsoon is also related to a new paradigm for examining the interannual variability of rainfall over West Africa, one that relates changes in annual rainfall to changes in either the intensity of the rainbelt or north–south displacements of this feature. The new view presented here is consistent with a plethora of research on the synoptic and dynamic aspects of the African Easterly Waves, the disturbances that are linked to rainfall over West Africa and spawn hurricanes over the Atlantic, and with our knowledge of the prevailing synoptic and dynamic features. This article demonstrate a new aspect of the West Africa monsoon, a bimodal state, with one mode linked to dry conditions in the Sahel and the other linked to wet conditions. The switch between modes appears to be linked to an inertial instability mechanism, with the cross-equatorial pressure gradient being a critical factor. The biomodal state has been shown for the month of August only, but this month contributes most of the interannual variability. This new picture of the monsoon and interannual variability shown here appears to be relevant not only to interannual variability, but also to the multidecadal variability evidenced in the region between the 1950s and 1980s.  相似文献   

16.
Liguang Wu  Li Tao 《Climate Dynamics》2011,36(9-10):1851-1864
Although previous studies reported upward trends in the basin-wide average lifetime, annual frequency, proportion of intense hurricanes and annual accumulated power dissipation index of Atlantic tropical cyclones (TCs) over the past 30?years, the basin-wide intensity did not increase significantly with the rising sea surface temperature (SST). Observational analysis and numerical simulation conducted in this study suggest that Sahel rainfall is the key to understanding of the long-term change of Atlantic TC intensity. The long-term changes of the basin-wide TC intensity are generally associated with variations in Sahara air layer (SAL) activity and vertical wind shear in the main development region (MDR), both of which are highly correlated with Sahel rainfall. The drying Sahel corresponds to an equatorward shift in the African easterly jet and African easterly wave activity, introducing the SAL to lower latitudes and increasing the MDR vertical wind shear. As a result, Atlantic TCs are more vulnerable to the suppressing effects of the SAL and vertical wind shear. Since the SST warming, especially in the tropical Indian Ocean, is a dominant factor for the Sahel drying that occurred over the past 30?years, it is suggested that the remote effect of SST warming is important for the long-term change of Atlantic TC intensity. Although influence of the AMO warm phase that started in the early 1990s alone can provide a favorable condition for TC intensification, its influence may have been offset by the influence of the ongoing SST warming, particularly in the Indian Ocean. As a result, there was no significant trend observed in the basin-wide average and peak intensity of Atlantic TCs.  相似文献   

17.
60年代后期以来,尤其进入80年代,全球气候显著增暖,但从北半球以至我国来看,此种增暖主要出现于冬季,而在盛夏的东亚—西非季风雨带却呈现出明显南移趋势。经严格统计检验并获得数值试验的支持,发现此种南移趋势及伴随的华北和Sahel区雨量的减少,与北半球—我国晴空太阳直接辐射的减少趋势有关。后者的出现是近年来火山活动频繁和大气污染加剧综合作用的结果。  相似文献   

18.
Ethiopian decadal climate variability is characterized by application of singular value decomposition to gridded rainfall data over the period 1901–2007. Two distinct modes are revealed with different annual cycles and opposing responses to regional and global forcing. The northern zone that impacts the Nile River and underlies the tropical easterly jet has a unimodal rainy season that is enhanced by Atlantic Multidecadal Oscillation warm phase. This rainfall mode is linked with the Atlantic zonal overturning circulation and exhibits 10–12-year cycles through much of the twentieth century. The southern zone has a bimodal rainy season that is enhanced by Pacific Decadal Oscillation cool phase and the southern meridional overturning circulation. Multiyear wet and dry spells are characterized by sympathetic responses in the near-equatorial trough extending from Central America across the African Sahel to Southeast Asia. The interaction of Walker and Hadley cells over Africa appears to be a key feature that modulates Ethiopian climate at decadal frequency through anomalous north–south displacement of the near-equatorial trough.  相似文献   

19.
In general, Africa has poor soils and unfavorable climates for agriculture. This is specially so in the Sahel of West Africa. Moreover, poor infrastructure means that fertilizer prices are higher in the Sahel than in Europe. Sahelian farmers have few incentives to maintain, let alone improve output. Nonetheless, the results of field experiments show that there are methods by which they could do this, in particular, by improving soil organic matter status, since this is often the principal way in which N, P and K are held in the soil. In the general absence of good policies to encourage fertility improvement, the Lomé workshop set goals for national fertilizer plans.  相似文献   

20.
气候因子对内蒙古沙尘暴频率的影响   总被引:9,自引:0,他引:9  
利用内蒙古中西部地区40年(1961~2000年)的气象资料、沙尘暴资料和气候资料,讨论了内蒙古中西部地区沙尘暴频率变化趋势和气候动力因子对沙尘暴频率的影响.结果显示:近40年期间,内蒙古中西部地区沙尘暴日数有明显的减少趋势,沙尘暴频率总体上减少的主要原因是影响沙尘暴频率趋势的气候动力因子,也就是代表冷空气活动的气候因子周期变化所致.影响内蒙古中西部地区沙尘暴频率时间分布变化的气候主导因子是:大风日数、北半球极涡面积指数、亚洲北半球极涡强度指数等代表冷空气活动的气候动力因子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号