首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
张宇昕  沈阳  马旭林 《气象科学》2021,41(4):463-470
西北太平洋地区晚季(10—12月)66%的热带气旋可以发展成为台风,其比率高于盛夏季节。基于贝叶斯突变分析的研究结果表明,西北太平洋晚季台风频数在1998年前后发生了年代际转折,即相对于1979—1997年,台风频数在1998—2016年显著减少。台风生成的空间分布情况表明,西北太平洋台风频数总体呈减少状态,减少最多的区域出现在东南部(0°~17.5°N,135°~180°E)。相应的,台风生成潜在指数(Genesis Potential Index, GPI)在该区域也明显减小。通过对比分析涡度、垂直切变、相对湿度和最大潜在强度四个主要因子对GPI变化的相对贡献大小,结果表明动力因子(垂直切变和涡度)对西北太平洋台风生成频数的年代际变化起关键作用。  相似文献   

2.
邵国云  孙旭光 《气象科学》2021,41(6):728-738
利用1945-2018年美国联合台风警报中心JTWC台风最佳路径资料,定义并系统分析了西北太平洋多台风事件时空分布气候特征和可能形成机制。结果表明:西北太平洋多台风事件(MTYE)主要发生在7-10月,其生成源地关键区位于西北太平洋135°~180°E的12°N附近。相对于单独发生的台风,多台风事件的台风平均强度更强、生命期更长。多台风事件的台风频数占总台风频数的比例以年际变率为主,并有一定的增长趋势。多台风事件强年对应于中东太平洋热带和北半球副热带海温显著增暖,通过Gill型Rossby波响应和Walker环流异常,在西北太平洋产生大气低层相对涡度正异常、中层相对湿度正异常和垂直东风切变异常,为多台风的生成提供了重要的气候背景,季节内多时间尺度瞬变涡旋动能的增强也有重要贡献。  相似文献   

3.
应用中国《台风年鉴》资料、欧洲中心40年月平均再分析资料和NOAA的逐月海温资料,研究了西北太平洋(5°—30°N,110°E—180°)风速垂直切变异常对热带气旋(TC)活动年际变化的影响。研究发现,西北太平洋所有TC、风暴以上级别的TC(TSTY,即达到热带风暴级别及以上的所有TC)和所有台风(WTY,包括台风、强台风和超强台风)年频数与西北太平洋风速垂直切变都显著负相关。西北太平洋风速垂直切变大小对生成源地在南海(5°—30°N,110°—120°E)TC和西北太平洋西部海域(5°—30°N,120°—150°E)TC的影响较小,而对西北太平洋东部海域(5°—30°N,150°E—180°)生成的TC影响最大:即西北太平洋风速垂直切变负异常年,有利于西北太平洋东部海域TC生成发展,使得负异常年较正异常年TC频数偏多和源地平均位置偏东;并且风速垂直切变的变化对TC频数和生成源地影响的显著性,随着TC强度的增加而增加。对TSTY生成环境场的进一步分析表明,西北太平洋风速垂直切变偏小年,季风槽偏强位置偏东,它的东端位于宽阔的太平洋洋面,与弱风速垂直切变区相配合,暖的海温加上低层强烈的正涡度和强烈辐合,且相应的高层有强的气流辐散区,这些环境场都有利于TSTY在主要源地尤其是西北太平洋东部海域生成,这是风速垂直切变偏小年TSTY偏多和生成源地偏东的重要原因。  相似文献   

4.
基于近40 a NCEP/NCAR再分析月平均高度场、风场、涡度场、垂直速度场以及NOAA重构的海面温度(sea surface temperature,SST)资料和美国联合台风预警中心(Joint Typhoon Warning Center, JTWC)热带气旋最佳路径资料,利用合成分析方法,研究了前期春季及同期夏季印度洋海面温度同夏季西北太平洋台风活动的关系。结果表明:1)前期春季印度洋海温异常(sea surface temperature anoma1y,SSTA)尤其是关键区位于赤道偏北印度洋和西南印度洋地区对西北太平洋台风活动具有显著的影响,春季印度洋海温异常偏暖年,后期夏季,110°~180°E的经向垂直环流表现为异常下沉气流,对应风场的低层低频风辐散、高层辐合的形势,这种环流形势使得低层水汽无法向上输送,对流层中层水汽异常偏少,纬向风垂直切变偏大,从而夏季西北太平洋台风频数偏少、强度偏弱,而异常偏冷年份则正好相反。2)春季印度洋异常暖年,西北太平洋副热带高压加强、西伸;而春季印度洋异常冷年,后期夏季西北太平洋副热带高压减弱、东退,这可能是引起夏季西北太平洋台风变化的另一原因。  相似文献   

5.
林美静  范可  王会军 《气象学报》2010,68(3):309-314
西北太平洋区域纬向风垂直切变的变化是影响西北太平洋热带气旋生成和发展的一个重要的动力因子,弱的纬向风切变有利于热带气旋的发生、发展。文中将西北太平洋区域纬向风垂直切变幅度(MWS)定义为850与200 hPa的纬向风之差的绝对值,以研究MWS的气候特征。结果表明,西北太平洋区域的MWS有两个主要空间模态,第1空间模态表现为在15°N以南的热带西太平洋存在MWS东西向变化相反的两个区域,20°N附近的热带西太平洋MWS的变化与其以北海区的MWS的变化相反。第2空间模态表现为在热带太平洋140°E东、西的变化相反。研究了两个模态相关的大气环流特征,发现去掉强ENSO信号后,第1模态不但与低纬度大气环流有关,而且还与南、北半球中高纬度的大气环流有关,第2模态主要与热带西太平洋和北太平洋局地大气环流有关。另外,第1模态的时间系数与赤道东太平洋海温、西北太平洋台风生成频次有着密切联系;第2模态时间系数与西北太平洋台风活动频次联系密切。  相似文献   

6.
利用1945~2011年美国联合台风预警中心(JTWC)西北太平洋热带气旋资料,研究了南海(5°N~25°N,110°E~120°E)与西北太平洋(5°N~25°N,120°E~180°)热带气旋生成位置、生成频数、强度和持续时间的季节变化差异及其成因。从热带气旋路径穿越经度带频数的角度,探讨了ENSO对气旋活动年际变化的影响。结果表明,南海热带气旋活动显著地受季风调控。在南海冬季风作用下,1~4月热带气旋生成于10°N以南且频数较少、强度较弱,这主要是低层气旋式相对涡度和弱东风切变区偏南造成的。相反,受夏季风影响,6~9月是热带气旋生成最多、最频繁的季节,大都生成于南海北部17°N附近。在5月(10月)的季节转换期,生成位置大幅度北进(南撤)且生成频数显著增加(减少),取决于风速垂直切变及中层的相对湿度的急剧转变。11、12月两海域热带气旋生成于10°N以南主要归因于其上空中层大气相对湿度较北部偏大。在西北太平洋,热带气旋生成的季节变化没有南海显著,只在7月有一次明显的变化,7~10月是热带气旋活动的"盛期"。在强度上,西北太平洋大部分区域全年均为弱东风切变,因此热带气旋以台风为主且持续时间长;但南海多为热带风暴。ENSO事件使得不同季节热带气旋生成区域和气旋路径地理位置发生显著变化。在El Nio事件期间,穿越南海所在经度带路径频数为负距平,而西北太平洋经度带为正距平;在La Nia事件期间,情况相反。  相似文献   

7.
西北太平洋夏季风的变化对台风生成的影响   总被引:40,自引:8,他引:40  
王慧  丁一汇  何金海 《气象学报》2006,64(3):345-356
研究了西北太平洋夏季风特征及其季风槽结构对台风生成的影响。当西北太平洋季风槽增强并向东扩展使季风加强时,西北太平洋的风速垂直切变、高低空辐散风、湿度和海温等都对台风的生成产生有利的影响,台风数明显比季风槽弱时多。而且对台风生成的位置也有很大的影响,即季风槽强时,台风的生成位置偏东,季风槽弱时台风的位置偏西。这表明西北太平洋夏季风主要是通过季风槽活动影响台风的生成。而夏季风的强弱对台风也有影响,在西北太平洋夏季风的活跃阶段,西北太平洋夏季风强时,台风生成的比较多,夏季风中断时台风生成的比较少。西北太平洋夏季风通过季风的季节内振荡对西北太平洋台风也有显著的影响。季节内振荡对台风生成的影响主要以30—60 d振荡为主。在这种低频振荡对流活动的湿位相时期台风生成个数明显多,干位相时期台风生成的少。而且低频振荡的西风位相也有利于台风生成,在东风位相时生成的台风少。另外,还研究了多台风期西北太平洋夏季的特征(群发性),发现在这些时期,存在强的季风槽,弱的垂直切变与充足的水汽供应。这表明西北太平洋台风时空的群发性与夏季风活动的异常密切相关。  相似文献   

8.
西太平洋副热带高压(西太副高)是影响东亚夏季气候的主要环流系统。利用再分析资料和美国联合台风预警中心的热带气旋最佳路径资料,研究了西太副高耦合模态对西北太平洋7—9月的台风生成的影响。结果表明:西太副高耦合模态与西太平洋地区的台风生成有显著抑制作用,且主要发生在西北太平洋北部;当西太副高偏强(弱)时,西北太平洋地区的台风生成频数偏少(多)。进一步研究表明西太副高耦合模态可以通过调节影响台风生成的850hPa涡度、垂直速度、600hPa相对湿度、垂直风切变等关键大尺度环境参数进而影响台风活动。  相似文献   

9.
用典型年合成方法分析研究了1979—2006年西北太平洋多台风年和少台风年热带大气ISO的影响。结果表明,热带大气ISO对西北太平洋台风的生成具有明显的调节作用。多台风年,菲律宾以西地区大气季节内振荡较弱,东传不明显;菲律宾以东地区积云对流较强,热带大气30~60 d低频振荡也偏强,与台风生成相关的传播特征为源自赤道140~160°E附近季节内振荡的西北方向传播。这种异常的30~60 d低频振荡对周围大气环流有正反馈的作用,从而导致积云对流的进一步加强,这种强的积云对流会引起赤道西风异常,产生异常Walker环流,在菲律宾附近形成风场的低层辐合、高层辐散,增强那里的上升气流,有利于台风生成。少台风年,菲律宾以西地区低频活动较强,东传明显,菲律宾以东的低频活动较弱。这种西强东弱的低频活动形式,使得大气低层在菲律宾以西地区为低频东风异常,菲律宾以东地区为低频西风异常,导致在菲律宾以东的西北太平洋大气产生低层低频风辐散、高层辐合的形势,增强下沉运动,不利于台风的生成。  相似文献   

10.
利用中国科学院海洋研究所提供的印度洋—太平洋海洋热通量资料,研究了1989—2010年中国南方地区秋季降水与前期春季西北太平洋潜热通量年际变化的联系,并讨论了其可能的物理机制。结果表明,前期春季4月西北太平洋(15°—30°N,150°—170°E)潜热通量与中国南方秋季降水有显著的正相关,当前期关键区潜热通量偏高(低)时,则中国南方秋季降水偏多(少)。分析发现前期关键区潜热通量强弱主要由西北太平洋上空气旋性风切变造成,当前期4月关键区潜热通量偏大时,该关键区正处于西北太平洋上空气旋性风切变北侧大风区中,而在其南侧的赤道强西风使得日界线附近出现海温偏高。随后,次表层高海温伴随开尔文波东传,相应地其北侧的低海温伴随罗斯贝波西传,于秋季西传至热带西太平洋地区,并激发出菲律宾反气旋,从而有利于热带洋面暖湿水汽向中国南方输送,使得南方地区降水偏多,反之亦然。  相似文献   

11.
采用美国NOAA卫星观测OLR (outing longwave radiation)资料以及NCEP/NCAR、CM AP月平均资料,利用合成分析等方法,研究了热带西北太平洋(125°~140°E,10°~20°N)与热带东南印度洋(90°~105°E,5°~15°S)对流活动异常的联系。结果表明:热带西北太平洋与东南印度洋对流活动异常的联系有显著的年代际变化; 20世纪80—90年代存在显著的正相关,20世纪90年代至21世纪初有显著的负相关,其后转变为正相关。合成分析表明,热带西北太平洋与东南印度洋对流活动正相关时,两地区均存在反气旋性环流,低层辐散、高层辐合,对流活动弱,不利于降水产生,有降水负异常;当热带西北太平洋与东南印度洋对流活动负相关时,两地区环流异常存在明显差别,热带东南印度洋有正的海温异常,高层辐散、低层辐合,有上升运动,对流活动强,有降水正异常,而热带西北太平洋则相反。热带西北太平洋和热带东南印度洋之间的斜向垂直环流圈将这两个地区联系起来,并决定了这两个地区对流活动负相关关系的形成。  相似文献   

12.
余茁夫  马烁  胡雄  严卫 《气象科学》2020,40(1):41-52
利用NCEP/NCAR再分析资料、FY-4A静止卫星资料对“利奇马”生命过程的大气环流特征、云宏观特征进行了分析。针对“利奇马”超强台风期间的一次降水过程,利用GPM卫星的双频降水雷达(Dual-frequency Precipitation Radar,DPR)资料对其进行了宏微观特征分析。结果表明:在“利奇马”生命过程中,西太平洋副热带高压、40°N以北的高空槽脊、(35°N,80°E)的高压以及“罗莎”台风对“利奇马”的发展、移动均产生了重要的影响;其云系分布先后表现为螺旋状、逗点状、中心对称结构以及不规则形状,其南北两侧的云区范围、云顶高度也不断变化;在“利奇马”超强台风期间的一次降水过程中,近地表降水率大致呈环状分布,降水粒子浓度以及降水粒子半径的南北分布与东西分布相差较大,除了云墙降水为对流降水外,其他部分的降水以层云降水为主,层云降水对应的雨顶高度在4.5~12 km,主要集中在5.5~10 km;对流降水对应的雨顶高度在1~12 km,主要集中在2~5 km和6~11 km。  相似文献   

13.
东亚夏季风指数的年际变化与东亚大气环流   总被引:66,自引:9,他引:66  
文中从夏季东亚热带、副热带环流系统特点出发 ,定义了能较好表征东亚夏季风环流年际变化的特征指数 ,并分析了东亚夏季风指数的年际变化与东亚大气环流及夏季中国东部降水的关系。文中定义的东亚夏季风指数既反映了夏季东亚大气环流风场的变化特征 ,也较好地反映了夏季中国东部降水的年际变化特征。此外 ,还探讨了东亚夏季风指数变化的先兆信号  相似文献   

14.
本文分析了1968—1981年8月南支热带东风急流的年际变动与台风生成数的关系,通过计算分析了南支急流强弱月热带大气环流的动力结构,联系台风活动频数差异进行了讨论。 最后重点剖析了1979—1981年夏季高空南支东风急流与低纬西南季风逐日演变以及与台风发生发展的关系。   相似文献   

15.
利用1979~2015年NCEP/NCAR发布的月平均全球再分析资料,分析了热带印度洋-西太平洋水汽输送异常对中国东部夏季降水的影响及其形成机理。研究结果表明:热带印度洋-西太平洋地区(10°S~30°N,60°~140°E)夏季异常水汽输送主要包括两个模态,他们可以解释总的水汽输送异常34%的方差。其中,第一模态(EOF1)表现为异常水汽沿反气旋从热带西太平洋经过南海及孟加拉湾输送到中国东部上空,对应南海、孟加拉湾水汽路径输送均偏多,此时西太平洋副热带高压显著偏强,异常水汽在长江中下游地区辐合并伴随显著上升运动,有利于长江中下游降水偏多;第二模态(EOF2)表现为异常水汽从热带印度洋沿阿拉伯海、印度半岛、中南半岛等呈反气旋式输送,华南上空相应出现气旋式水汽输送异常,并对应异常水汽辐合和上升运动,有利于华南降水偏多。就可能的外部成因而言,EOF1与ENSO关系密切,表现为前冬热带中东太平洋显著偏暖,夏季同期热带北印度洋、南海上空显著偏暖,造成西太平洋副热带高压显著偏强,异常水汽主要来源于热带西太平洋和南海;EOF2与同期热带印度洋偶极子(TIOD)异常有关,TIOD为正位相时热带印度洋上空出现异常东风,华南上空出现异常气旋并伴随水汽异常辐合,异常水汽主要来源于热带南印度洋。  相似文献   

16.
利用1981—2018年CMA-STI热带气旋最佳路径数据集、NCEP/NCAR再分析资料和OA Flux3潜热通量数据,分析了盛夏海南岛台风累积动能(Accumulated Cyclone Energy,ACE)气候特征及异常年大气环流形势和相关物理量特征。结果表明:1981—2018年盛夏海南岛ACE呈先下降后上升的变化趋势,同时具有明显年代际特征,2010年后存在准2 a显著周期。盛夏ACE偏高(低)年,西太副高偏大(小)偏强(弱)偏西(东),其南侧伴有偏强(弱)的季风槽,台风北侧对流(不)活跃;低层防区内存在异常气旋式切变(反气旋式环流),海南受偏东(西)异常气流影响,有利(不利)于对流、水汽等向台风环流并入而加强(削弱)台风,120°~130°E越赤道气流(不)活跃;菲律宾以东至南海高空抽吸作用偏强(弱),盛行异常上升(下沉)运动,且环境风垂直切变偏小(大);东海—日本海潜热通量偏小(大),热带西太平洋及南海低层为水汽辐合(散)区。  相似文献   

17.
文中利用日本静止气象卫星观测的1981~1994年1天8次的TBB观测值和1978~1994年NOAA卫星观测的1天2次OLR观测值研究了青藏高原地区夏季对流云系季节变化以及对流云的日变化及其东西向移动规律,并对1994年的资料进行了个例分析。结果表明,青藏高原夏季对流云有极为明显的日变化,以00~05SUTC为最弱,15~17UTC最强。在季风雨爆发后的7月中旬到8月上旬在高原中部(30~32°N,90°E)、东部(30°N,97°E)和西部(30°N,85~87°E)有3个TBB低值中心,多年月平均对流中心区云顶高度可达9.6km,而旬对流中心个别地区平均可达13km。对流云区开始发展于东部地区,随后对流云中心逐步向西移动,并于7月中下旬达到最西,此时西部地区从多年平均而言可以有短暂的强对流发展。  相似文献   

18.
Summary One of the greatest challenges in tropical weather forecasting is the rapid intensification (RI) of the tropical cyclone (TC), during which its one-minute maximum sustained wind speed increases at least 30 knots per 24 hours. Here we identify and elucidate the climatic conditions that are critical to the frequency and location of the RI on annual, intraseasonal, and interannual time scales. Whereas RI and formation share common environmental preferences, we found that the percentage of TCs with RI varies annually and from year to year. In August, only 30% of TC actually experiences RI, in contrast to the annual maximum of 47% in November. The proportion of RI in July–September is higher during El Ni?o years (53%) than the corresponding one in the La Ni?a years (37%). Three climate factors may contribute to the increase in the proportion of RI: the southward shift in the monthly or seasonal mean location of the TC formation, the increase in the low-level westerly meridional shear vorticity, and the decrease in northerly vertical shear. When the mean latitude of TC formation increases, the mixed-layer heat content decreases while TC’s inertial stability increases; both are more detrimental to the RI than to TC formation because the RI requires large amount of latent heat energy being extracted efficiently from the ocean mixed layer and requires accelerated low-level radial inflow that carries latent heat reaching the inner core region. We further demonstrate that the RI frequency in the Philippine Sea and South China Sea can be predicted 10 to 30 days in advance based on the convective anomalies in the equatorial western Pacific (5° S–5° N, 130°–150° E) on intraseasonal time scale. The Ni?o 3.4 SSTA in June is a potential predictor for the peak TC season (July–September) RI activity in the southeast quadrant of the western North Pacific (0–20° N, 140–180° E). The RI is an essential characteristic of category 4 and 5 hurricanes and super typhoons because all category 4 and 5 hurricanes in the Atlantic basin and 90% of the super typhoons in the western North Pacific experience at least one RI process in their life cycles. Over the past 40 years, the annual total of RI in the western North Pacific shows pronounced interdecadal variation but no significant trend. This result suggests that the number of supper typhoons has no upward trend in the past 40 years. Our results also suggest that when the mean latitude, where the tropical storms form, shifts southward (either seasonally or from year to year) the proportion of super typhoon or major hurricane will likely increase. This shift is determined by large scale circulation change rather than local SST effects. This idea differs from the current notion that increasing SST can lead to more frequent occurrence of category 4 or 5 hurricanes through local thermodynamics. Corresponding author’s address: Bin Wang, Department of Meteorology, University of Hawaii, 2525 Correa Rd., Honolulu, Hawaii 96822, USA (also visiting professor at the Ocean University of China)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号