首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
琼中35年气候变化分析   总被引:1,自引:0,他引:1  
郑锋  王刚 《广西气象》2006,27(4):37-39
利用琼中1971-2005年温度、降水、日照资料进行分析,得出:温度明显上升,日照略有增多,降水则呈下降趋势;不同季节气候变化不同,冬、春季温度回升明显,冬、春、秋季降水偏少;冬、春季气候呈暖干化趋势,对农业生产不利。  相似文献   

2.
博白县近50年气候变化特征分析   总被引:3,自引:0,他引:3  
利用1957~2006年博白国家气象观测站二级站的气象资料,分析了近50a博白县气温、降水和日照的变化特征.分析结果表明,博白县年、冬春季气温呈上升趋势,而夏秋季气温上升不明显,博白县气候正在趋向变暖,特别是最近10a来增温最为明显;年降水总体呈略上升趋势;年日照时数总体呈下降趋势.  相似文献   

3.
根据济宁2000—2010年的气温、降水、日照等气象要素,利用回归分析方法研究了近11年来气温、降水和日照的变化倾向,并对期间冬小麦生长季节气候异常天气进行了分析。表明:济宁近11年来平均气温和日照时数均略有下降的趋势,其中春、夏季平均气温和日照时数呈下降趋势,平均气温秋季有上升的趋势,冬季升降不明显;日照时数秋、冬季有缓慢上升的趋势;年降水量呈增加趋势,其中春、夏季降水量有上升的趋势,秋、冬降水量则有减少的趋势。由于春季平均气温和日照时数有下降趋势,春霜冻害发生机率增大;秋季平均气温有上升趋势,降水在秋、冬有减少的趋势,使得冬前发生旺长和秋冬连旱,甚至冬季冻害的机率增大。  相似文献   

4.
玉林市近10年气候变化特征   总被引:3,自引:0,他引:3  
利用2001-2010年玉林国家基本站的气象资料,分析了近10年玉林市气温、降水和日照的变化特征。分析结果表明:玉林市年平均气温呈明显上升趋势,其主要是来自夏、冬两季增温的贡献;年降水量总体呈平缓略升态势,10年间降水分布呈两头多,中间少的特点;日照时数前期先降后升,中后期平稳少变,春季略少。  相似文献   

5.
1957~2004年盘锦芦苇湿地的气候变化特征分析   总被引:4,自引:0,他引:4       下载免费PDF全文
利用1957~2004年盘锦湿地常规气象资料,分析了盘锦湿地的日照、温度、降水和风速的变化特征。结果表明:日照时数的月变化呈双峰曲线,5月和9月表现为日照高峰,7月为日照低谷;近48 a盘锦湿地的年平均气温呈显著的上升趋势,冬季增温最明显,其次为春季,夏季增温最弱,年平均极端最低温度呈显著的上升趋势;近48 a的年平均风速呈显著的下降趋势,月平均风速变化趋势呈双峰曲线。  相似文献   

6.
利用长江源区5个气象站46a的地面降水和高空露点资料,分析了该地区降水和高空水汽含量的变化特征。结果表明:近46a来,长江源区不同雨量等级的雨日和雨日平均雨量在夏半年呈减少趋势,冬半年呈明显增多趋势,降水集中,降水强度增大;年际间降水量不稳定,年变化趋势不明显;夏、秋季降水量变化呈微弱减少趋势,而冬、春季降水量呈增加趋势,其中春季增幅较大,冬季增湿趋势明显,冬、春季降水量均在20世纪70年代和80年代出现了由少向多的突变;长江源区气候在波动性变暖变干过程中,自1986年起出现了气候转向暖湿的信号,其主要原因在于全球变暖并由此引起的海洋蒸发和陆地蒸散加强,地气水分循环加快,空中水汽输送加强。  相似文献   

7.
广宗县气候变化及其农业种植结构调整对策   总被引:1,自引:0,他引:1  
魏瑞江  卫朝贤 《气象科技》2004,32(Z1):58-60
通过对河北省广宗县 1972~ 2 0 0 2年逐年温度、降水、日照资料的分析 ,总结出了其气候变化特点 :2 0世纪70年代气温比较稳定 ,降水呈减少、日照呈增加趋势 ;80年代 ,气温变化比较平稳 ,降水呈增多趋势 ,日照呈减少趋势 ;90年代以来 ,气温升高 ,降水减少 ,日照增加的趋势很明显。分析广宗县现有农业种植结构现状和存在的问题 ,提出充分利用气候资源 ,发展节水农业、改良土壤、防风固沙、发展特色农业等调整对策。  相似文献   

8.
近50a开封市气候变化特征分析   总被引:4,自引:0,他引:4  
利用开封市气象观测站1957-2007年的观测资料,分析了近50 a气候变化的特征,结果表明:开封市年平均气温呈上升趋势,春季气温呈波浪式平缓上升,夏季气温略有下降,秋季气温缓慢上升,冬季气温上升明显;年平均降水量变化趋势不明显,年际波动大,夏季降水呈上升趋势,冬春降水变化不明显,秋季降水下降明显;历年大风日数呈V型上升趋势,夏季上升明显,秋冬两季略有下降;年平均大雾日数呈明显上升趋势;年平均日照时数呈下降趋势,2000年后日照时数下降明显.  相似文献   

9.
1961-2009年三江源地区气候变化特征分析   总被引:2,自引:0,他引:2  
利用三江源地区18个气象台站1961—2009年气温、年最高气温、年最低气温、降水量、降水日数等资料,分析了该地区年最高气温、年最低气温、降水量、降水日数等气候要素的变化趋势。研究表明:近49年来三江源年平均气温、年平均最高气温、年平均最低气温均在升高,升高速率平均最低气温明显大于平均气温和平均最高气温,年平均气温的升高主要是由最低平均气温升高引起的;三江源年和四季降水量均呈增多趋势,冬、春季降水量增幅最明显,年降水量变化的空间分布北部增多而东南部减少,年降水量除20世纪70年代—21世纪初均呈增加趋势;年和冬、春季≥0.1mm降水日数增加,而夏秋季降水日数减少;年和冬、夏、秋季潜在蒸散量呈显著性增加趋势,春季变化则不明显;年和四季平均风速均呈显著下降趋势;年和四季日照时数变化不显著。  相似文献   

10.
气候变化对内蒙古小叶杨叶芽开放期的影响   总被引:5,自引:0,他引:5  
利用趋势倾向率等统计分析方法,对内蒙古气候(1961—2006年)和小叶杨叶芽开放期(1981—2006年)的变化趋势进行了分析,并探讨小叶杨叶芽开放期与不同时段的气温、降水、日照的相关性以及气候因子的综合作用。分析发现:内蒙古地区小叶杨叶芽开放期变化趋势表现出强烈的地域差异。小叶杨平均叶芽开放期孪井滩最早,鄂温克最晚,两地相差39 d;各地区小叶杨叶芽开放期的变化趋势基本一致,除额尔古纳呈提前趋势外,其他地区表现出延迟趋势;小叶杨叶芽开放期与春季气温均呈显著负相关,即春季气温升高,小叶杨叶芽开放期提前,与降水和日照的相关性不显著;在日照充足的内蒙古地区气温和降水共同影响着小叶杨叶芽开放期的变化。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

17.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

18.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

19.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号