首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用多源观测资料综合分析了2015年11月沈阳地区一次PM2.5 重污染天气的气象条件、垂直风场演变、大气边界层特征以及污染物的来源。结果表明:本次重污染过程中,沈阳市区PM2.5浓度长达81h超过250μg · m^-3 ,其中峰值浓度达到1287μg · m^-3 ,重污染期间PM2.5 /PM10 的比例最高为90%。受地面倒槽和黄淮气旋影响,近地面层持续存在的逆温层、高相对湿度和弱偏北风为颗粒物吸湿增长和长时间聚集提供有利的天气条件。风廓线雷达风场资料显示在重污染期间,近地面层存在弱风速区、凌乱风场和弱下沉气流。利用风廓线雷达资料计算了边界层通风量(Ventilation Index,VI)和局地环流指数(Recirculation,R),边界层通风量VI和PM2.5 存在明显的负相关,非污染日VI是重污染日的2倍,局地环流指数R在重污染天气前大于0.9,而在污染期间部分空间R小于0.8。通过后向轨迹模式和火点监测资料分析发现,沈阳上空300m高度气团来自于生物质燃烧区域,而且沈阳地区NO2和CO浓度的变化与PM2.5一致,说明本次重污染过程也可能和生物质燃烧有关。  相似文献   

2.
河北廊坊市连续重污染天气的气象条件分析   总被引:3,自引:0,他引:3  
利用2013年1月至2014年7月廊坊市空气污染资料及逐小时风向风速、相对湿度、气压等地面自动站观测资料,通过统计学方法对廊坊市该期间发生的17次连续3 d及以上重污染天气过程进行分析,结果表明:(1)17次连续重污染天气过程主要发生在1~3月和11~12月,1月最多,最长连续时间长达7 d;(2)连续重污染天气过程中,首要污染物主要是细颗粒物PM2.5;有高污染浓度持续日和高污染浓度间断分布日2种情况,平均浓度分别达到314μg/m3和193μg/m3,高污染浓度持续日的比例达60%;(3)500 h Pa高空廊坊市处于高压脊前西北偏西气流中,地面分别位于弱高气压场区及低压场(倒槽)区是连续重污染天气过程最主要的2类配置类型,后者是6级空气严重污染的主要控制形势;(4)连续重污染天气形成的气象条件是:廊坊市地面风向为西南风至偏西风或者为偏东风至东南风,风力≤2级;2~3月│ΔP3│≤3.0 h Pa,其余月│ΔP3│≤2.0 h Pa;相对湿度在40%~95%之间;日降水量≤0.6 mm,近地层有逆温层存在,平均高度900 h Pa以下,厚度≥10 h Pa,逆温层强度≥1℃;(5)当廊坊市地面处于低压场(倒槽)控制下,逆温层高度在925 h Pa以下、厚度≥20 h Pa及逆温层强度≥3℃,有利于严重污染天气的形成,若同时廊坊市地面风向为东北风至偏东风、风力为1级,相对湿度≥50%,则有利于高污染浓度持续日的形成和发展;(6)2014年2月11~15日河北省区域性空气重污染的演变状态及利用美国NOAA的Hysplit-4模式计算得到的空气质点的后向轨迹表明,燕山、太行山山脉的阻挡以及河北省和周边重污染区域分布导致的污染物区域输送是廊坊市连续重污染天气产生的重要因素之一。  相似文献   

3.
利用2013~2014年石家庄逐小时PM2.5监测浓度与地面及探空等气象观测资料,从大气的垂直扩散、水平扩散和地面局地环流等方面,探讨气象条件对PM2.5浓度的定量影响关系。结果表明:(1)石家庄PM2.5浓度具有明显的日、月和季节变化特征,早晨08时前后PM2.5浓度最高,下午16时前后浓度最低;冬季PM2.5浓度最高,夏季最低;(2)2 a共出现485 d逆温,其中10~12月出现频率最多,达82.8%~86.2%,逆温致使低层大气垂直运动受阻,不利于污染物扩散;(3)大气混合层高度与PM2.5浓度呈反相关,PM2.5浓度75μg/m3(空气质量优良),对应大气混合层高度平均为1 448 m,而PM2.5浓度≥150μg/m3(空气重污染)的混合层高度降到878 m;(4)受地形影响,石家庄地面风与边界层附近风对污染物的影响明显不同:925 h Pa西南风、地面偏东风不利于污染物扩散;925 h Pa西北风、地面偏西风有利于污染物浓度降低。925 h Pa风速4 m/s、地面偏西风风速2 m/s、地面偏东风风速3 m/s,有利于污染物扩散;(5)降水对污染物有湿清除作用,清除量不仅与降水量有关,还与前期PM2.5浓度有关,且冬季降雪过程对PM2.5的清除作用是降雨的4倍。  相似文献   

4.
利用青岛市环境监测中心站环境监测资料、青岛市气象常规观测资料、美国国家环境预报中心(NCEP)再分析资料,对青岛地区2016年12月18—21日的一次雾霾重污染天气过程进行分析。结果表明:污染期间,亚欧大陆中高纬度地区500hPa呈两槽一脊的环流形式,青岛处于弱槽系统控制下,空气质量好转时,高空锋区明显增强,西北风加大,地面冷锋快速东移;此次雾霾重污染天气过程空气中近地面相对湿度一直维持较高,重污染期间小于2.6m·s~(-1)的地面风速对污染物扩散没有明显作用;污染物的浓度增加、持续阶段与气象要素能见度、风速、混合层厚度呈负相关性,与相对湿度呈正相关性,与温度的相关性较低;污染过程中青岛市区24h的输入污染源主要来自半岛北部地区,主要污染物为PM_(2.5)颗粒。  相似文献   

5.
利用气象、环境、卫星遥感火点监测等资料,从环流形势、气象要素、污染物和污染传输特征等方面对哈尔滨2018年4月4日夜间至5日白天罕见重度霾天气成因进行分析。结果表明,此次重度霾天气首要污染物为PM2.5,污染最重时PM2.5浓度高达507μg?m-3,秸秆焚烧是污染物的主要来源,既有本地源又有外地源,利用HYSPLIT模型模拟出这次重度霾天气污染传输特征。重度霾时段,近地面风速小,为1.5m·s-1左右,最小为0.1m·s-1,风向呈弱气旋性辐合、湿度增大有利于形成霾。低层存在较强的贴地逆温,逆温层顶高度约为100m,逆温强度约为1.5℃/100m,不利于污染物在垂直方向上扩散。地面均压场和高空弱高压脊、暖锋锋区和暖平流为这次重度霾天气提供了有利的大气环流背景条件。  相似文献   

6.
利用常规气象站地面观测资料、环境监测站污染物监测资料以及欧洲中心再分析资料等,对辽宁省一次秸秆燃烧引起的重污染天气过程进行分析,探讨不同城市间污染程度的差异及成因。结果表明:(1)此次重污染过程主要污染物成分为CO,PM_(2.5)质量浓度与CO和NO_2质量浓度的时间变化有很好的对应关系,能见度受PM_(2.5)质量浓度和相对湿度共同影响;(2)营口和盘锦前期1.0 mm以上的弱降水过程对污染物湿沉降作用明显,而其他城市降水量较小反而有利于污染物的吸湿增长;(3)重污染期间,地面至700 hPa高度的水平风速均接近4 m·s~(-1),大气层结稳定,逆温层明显,抑制了污染物的垂直扩散;(4)除锦州外,其他4市850 hPa和900 hPa高度间0℃左右的暖层长时间维持,可能为污染物颗粒表层水分相态的变化、碰并增长提供了有利的环境;(5)污染期间,吉林和黑龙江一带存在大量火点,大面积秸秆集中燃烧是下风向辽宁中部地区主要污染源,在有利于污染物积累的天气条件下,需要加强本地和外来污染源的控制。  相似文献   

7.
为对比分析北京地区供暖季期间两次重污染过程的影响因素,利用气象常规和非常规资料、环保监测站观测资料分析了2016年11月2—5日(以下简称“2016年过程”)和2018年3月11—14日(以下简称“2018年过程”)两次重污染过程的气象条件。结果表明:2018年过程与2016年过程天气尺度高低层天气影响系统类似,地面平均风速均为1.5 m·s-1,大气水平扩散条件基本相似,边界层风场的分布及风速大小基本一致,但2018年过程低层暖气团影响高度达2 km以上且逆温强度很大,大气垂直扩散条件更不利于污染物的扩散;2018年过程PM2.5浓度较2016年过程污染最重单站峰值浓度偏低30.2%,全市平均浓度也较其略低,且未出现爆发性增长阶段,浓度积累增长平缓;2016年过程一氧化碳(CO)出现爆发性增长,4 h浓度上升接近1 000 μg·m-3,峰值浓度为3 179 μg·m-3,黑碳(BC)浓度持续较高且峰值浓度为19 939 ng·m-3;2018年过程期间CO峰值浓度较2016年过程下降24.6%,且未出现爆发性增长阶段,BC有一定日变化特征,峰值浓度为4 228 ng·m-3,远远低于2016年过程。两次重污染过程发生在基本相似的气象条件下,2018年的垂直扩散能力更为不利,但从细颗粒物和一次排放污染物对比来看,2018年过程多种污染物浓度显著下降、平均浓度明显降低,这与人为减排限排等因素密切相关。  相似文献   

8.
利用西安市气象常规观测资料、美国国家环境预报中心(NCEP)1°×1°再分析资料FNL(Final),对西安地区2012年12月11—15日的一次重污染天气过程进行分析。结果表明:(1)与历史同期常年值比较,此次重污染天气过程中地面气象数据显示出明显的寡照、低温、高湿以及低风速;(2)高压后部的形势与地面弱辐合有利于近地面水汽的输送和凝结,与850 h Pa的高湿相互配合,使得水汽与污染物相互吸附加剧污染天气。700 h Pa以下明显的下沉气流、持续出现的逆温层结、较低的混合层厚度将污染物聚集于近地面层内,引起污染的持续和加重;(4)西安地区所处的"喇叭口"盆地地形也是重污染天气持续的一个重要原因;(5)后向轨迹模拟结果显示偏东方向的河南、山西、渭南等地区为此次重污染过程中输入污染物的主要来源。  相似文献   

9.
利用国家环保局数据中心提供的呼和浩特市逐日逐时空气质量等级和首要污染物数据,结合高低空天气形势变化和地面风速数据,对呼和浩特市2014年12月26—30日发生的空气持续重污染过程的形成及维持进行了分析。结果表明,此次呼和浩特市连续重污染过程的首要污染物主要是PM2.5,其次是PM10,污染属于"细颗粒物污染";污染过程的日变化特点为夜间污染较白天污染要重,全天变化呈现明显的"双峰双谷"特点;污染过程的天气特点归纳为:地面形势处于高压前部的弱风场内,高空500h Pa基本为平直纬向环流,低层850h Pa温度场先后表现为暖舌区和平直区,本次污染过程属于"静稳气象条件"下产生的污染过程。  相似文献   

10.
该文对2016年11—12月北京及周边地区不同站点重污染期间PM2.5质量浓度变化特征进行分析,并结合地面和探空气象要素及化学组分等对重污染成因进行深入探讨,比较了其中两次持续3 d及以上重污染过程的异同。结果表明:重污染期间北京及周边地区PM2.5质量浓度较高,北京上甸子站、顺义站、朝阳站的PM2.5质量浓度分别为73.1,130.8,226.0 μg·m-3,河北保定站和石家庄站分别为357.8 μg·m-3和346.9 μg·m-3。12月17—21日重污染过程比11月3—5日持续时间更长且PM2.5质量浓度更高。通过对11—12月所有重污染过程分析发现,北京颗粒物重污染发生的主要气象条件是静稳天气。在排放源相对稳定情况下,逆温层的结构、演变和持续时间决定了重污染的程度,其中污染持续时间和污染期间的主导逆温层类型演变对重污染程度有较好的指示作用。较低的水平风速、逆温层的持续出现及更多的燃煤和机动车尾气排放是12月17—21日污染偏重的原因。  相似文献   

11.
基于2015年秋末冬初华北地区频繁出现的大范围重污染天气过程,利用无人直升机搭载的气溶胶采样装置和激光粒子计数器对北京顺义及房山地区近地面大气颗粒物进行探测,分析了重雾霾天气大气颗粒物的质量浓度和数浓度廓线及其分布特征。结果表明:北京地区重雾霾天气过程粒径小于1.0μm的气溶胶数浓度随高度变化不明显,粒径大于1.0μm的气溶胶数浓度随高度呈弱的减小趋势,说明重污染天气条件下近地面层大气颗粒物的粒子数相对稳定,亚微米级气溶胶数浓度较高,而粗粒子气溶胶数浓度较低。基于无人直升机搭载的气溶胶采样装置采集的气溶胶样品的质量浓度廓线表明,50 m高度大气颗粒物质量浓度较高,最大浓度达700μg·m-3。  相似文献   

12.
利用环境空气质量指数(AQI)、降水量及大气环流场资料对2013年贵阳市2次空气污染过程进行分析,从天气形势和空气污染演变角度分析气象因子在其中的作用。结果表明,2次污染过程中动力和热力气象因子均为其维持和发展提供有利条件,但存在异同。相同之处在于:2次污染过程中贵阳市均处在地面静止锋后,地面风速较小,不利于近地面空气污染物向区域外的水平输送;2次污染过程中贵阳上空均处在高空脊前的异常下沉气流区,配合对流层中低层的异常水平风速垂直梯度减小,均利于减小大气的斜压性、减弱天气尺度扰动的发展,同时异常逆温层的存在使大气近地层更加稳定,均不利于空气污染物的垂直混合、向高空扩散,加强了污染物在近地面集聚。不同之处在于:2次污染期间贵阳市上空分别存在不同程度的低层单层逆温和中、低层双层逆温,逆温增强时段与污染最重时段相对应,逆温层的存在大大增强了大气层结稳定度,为污染过程的维持和发展提供有利的气象条件;2次污染过程中风场的三维特征对演变过程中逆温层的影响各异,第1次过程中对流层中层偏南风利于将南方的暖湿气流输送到贵阳市上空,利于逆温层的增温、增湿和发展、维持,而第2次过程中高、低空一致的偏北风,在近地层易形成冷垫、抬升暖空气,加强逆温层的维持和发展。  相似文献   

13.
利用长株潭地区地面空气质量监测资料、常规地面气象资料及NCEP再分析资料和MODIS火点监测资料,结合HYSPLIT4后向轨迹模式,对2014年10月1718日长株潭地区一次严重霾天气过程的空气污染特征和成因进行综合分析。研究表明,长株潭地区此次严重霾天气污染事件的主要污染物为PM2.5,安徽南部和江西西北部地区秸秆焚烧产生的颗粒物,经高空偏东北气流引导输送到长株潭地区,是这次大范围烟霾天气的主要来源。长株潭地区西部高空槽区宽广,槽前西南气流较为强盛,地面受均压场控制,水平风速弱,为严重霾污染天气的维持提供了有利的环流条件。中低层逆温和大气底层湿度的增加,使污染物粒子不断累积;近地面连续静(小)风和风向的频繁转变,不利于污染物粒子的水平扩散;中下层弱的下沉气流、较低的混合层高度有利于污染物的垂直累积,为此次重度霾污染天气的发展、加强提供了有利的气象条件。  相似文献   

14.
该文利用空气质量、污染物资料、NCEP(1°×1°)再分析资料及常规气象资料,分析2017年10月25日—11月3日防城港市一次持续性空气污染过程的污染物特征和气象条件。结果表明:此次空气污染过程首要污染物为臭氧,臭氧浓度存在日变化;气温与臭氧浓度变化存在显著正相关,相对湿度与臭氧浓度变化存在显著负相关;午后太阳辐射增强、湿度降低、无降水等气象条件有利于臭氧浓度的增加;500 hPa环流平直、地面为弱的高压脊、地面风速小、天气晴好少云、低层存在逆温层是本次持续性空气污染过程维持的有利气象条件。  相似文献   

15.
苏州市一次重霾污染天气过程的数值模拟   总被引:1,自引:1,他引:0  
本文对苏州地区2015年12月13—15日发生的一次典型的重霾污染天气过程进行了数值模拟,分析了颗粒物及其组分的时空变化特征及其气象影响因子,以期为该区域空气污染治理和预防提供科学依据。结果表明:(1)利用WRF-Chem模式对此次重霾污染天气过程的污染气体成分进行数值模拟后发现,小时平均的PM_(2.5)、PM_(10)、CO、SO_2、NO_2模拟值与实测值的相关系数较高,达到0.68以上,通过了P0.01的显著性检验,且日变化过程对应也较好。(2)通过分析此次污染过程的天气背景,发现污染形成期高空环流比较平直,中层为均匀的弱高压控制,地面受弱高压脊控制,这种形势容易导致颗粒物的堆积。后期地面等压线密集时,风速大,有利于污染物的输送与扩散。(3)通过分析此次污染过程期间气象要素的变化发现,有逆温、风速小、相对湿度大等不利的气象条件是导致此次污染过程发生的重要原因之一。(4)HYSPLIT轨迹分析显示,此次重霾过程主要受北方大范围灰霾颗粒物南下影响,北方污染气团逐步南推,14至15日本地大气扩散条件差、污染物累积,最终导致本地污染加重,从而发生重霾事件。(5)火点图的分布进一步验证了此次重霾污染过程是由外来污染气团输入所导致。  相似文献   

16.
利用大气观测、探测及污染物探测资料、NCEP再分析资料和GDAS资料,对2013年10月26—29日一次持续性重霾天气过程中的气象要素和气溶胶演变特征进行分析。结果表明:本次持续性霾天气过程中,临沂地区PM_(2.5)污染严重,大气中PM_(2.5)的小时平均浓度工业区城区郊区,污染最严重时分别为365,344,284μg·m~(-3);较小的地面平均风速及PM_(2.5)浓度的稳定上升和较低的地面湿度为本次霾天气过程的形成和发展提供了有利条件;当临沂地区以南风或西南风为主时,市区霾天气加重,上游空气污染具有平流输送特征。贴地逆温层的形成,导致污染物在低空不断积累,造成污染浓度的持续升高。地方政府应加快产业结构调整,控制企业的污染物排放,才是治理雾霾的根本办法。  相似文献   

17.
利用2016年12月14日—2017年1月3日安徽寿县国家气候观象台大气边界层垂直探测资料、地面自动气象站资料、污染物浓度资料及天气图资料,对该地区两次重污染的积累和清除过程进行了分析,得到以下结论:1)两次重污染过程均起源于地面弱风(风速3 m/s)、高湿(相对湿度80%)等不利气象条件,导致污染物局地积累。再通过大风、降水、大雾过程等有利的扩散、沉降条件,对污染物进行清除。2)天气形势在重污染积累过程中起到了重要作用。主要特征表现为,高低空层结稳定,且低空处于湿区内部,多受暖舌控制或伴有暖平流。第一次重污染清除过程中,控制寿县地区的天气系统逐渐转变为低压,风向转为偏东风,并伴有降水天气。第二次污染物清除过程,则是大雾湿沉降和逆温层消除共同导致。3)重污染积累过程中边界层高度均偏低,最大高度也仅为500 m,对污染物垂直扩散范围有所限制,进而影响局地污染物浓度。重污染过程逆温现象多发,近地层逆温主要发生在夜间和清晨,逆温强度最强可达3℃/(100 m),污染物在逆温层低层和底部之下堆积。  相似文献   

18.
基于京津冀地区80个环境监测站PM_(2.5)浓度逐时监测资料和气象观测资料,以2016年12月16—21日和2017年1月1—7日雾和霾天气为例,分析PM_(2.5)浓度演变的气象条件。结果表明:气象条件在北京地区污染物浓度爆发性增长过程中具有重要作用。北京地区12月19—20日PM_(2.5)浓度出现爆发性增长,小时浓度在8 h内上升201μg·m~(-3),主要是边界层南风分量由地面增厚至700 m,700 m以上弱下沉抑制作用,结合地面辐合线维持所致;20—21日北京地区PM_(2.5)浓度维持高值且无日变化,是由于低空1.5 km出现弱回暖,逆温层显著增厚增强且无明显日变化,导致高浓度气溶胶无法有效扩散。综合来看,2016年12月16—21日污染物浓度爆发性增长的原因以外源性污染物输送为主;2017年1月3—4日污染物浓度爆发性增长原因与局地极端不利扩散条件及污染排放等其他因素有关。  相似文献   

19.
利用北京市环境保护监测中心和美国大使馆的细颗粒物(PM2.5)逐时监测数据,中国科学院大气物理研究所325 m气象梯度塔资料以及实况天气图和探空资料,对2015年11月27日至12月1日北京的PM2.5重污染过程的边界层特征进行了分析。研究发现:这次重污染过程持续时间长、强度大,其中PM2.5浓度超过75 μg/m3的时次共计126 h,超过150 μg/m3共计116 h,小时最高PM2.5浓度为522 μg/m3。在高低空环流场配置的影响下,近地面静风和多层逆温结构抑制了污染物在水平和垂直方向上的输送,加上边界层内的深厚湿层,使得其中气溶胶不断吸湿增长,高PM2.5浓度得以维持。在重污染期间,湍流动能较低,不利于污染物的水平和垂直扩散。垂直方向的湍流动能一直占水平方向的15%~20%左右,水平湍流动能占主要贡献。摩擦速度与湍流动能呈现出相似的变化趋势,不同高度之间的摩擦速度差别不大。超出前后时次一个数量级的湍流强度尖峰的出现是湍流场发生调整的一个信号,是PM2.5浓度发生剧烈转变的前兆,预示着污染状况更加糟糕。重污染过程中感热通量的输送方向为从地面向大气输送,感热通量和潜热通量都大幅减少,并且表现出明显的日变化特征。对湍流功率谱计算和分析表明,在重污染过程期间,时间尺度为5 min至6 h的中尺度过程对从地面到大气方向的动量和热量通量输送做出了重要贡献。  相似文献   

20.
2016年11月28日—2017年1月11日,河南省出现了3次持续多日的中度及其以上的污染天气过程,分别为2016年11月28日—2016年12月5日、2016年12月15日—21日、2016年12月28日—2017年1月11日,尤其最后一次,持续时间长达15 d。第二次污染过程的后4 d,严重污染自北向南发展到全省。为了今后对持续污染天气的预报有所参考,对3次污染过程的气象要素演变及高空地面形势进行详尽分析,总结具有预报意义的天气学特征:当昼夜温差下降到4~6?℃、温度露点差下降到0~5 ℃、风力约为2?m·s~(-1)、气压变幅5?hPa时,可能会产生严重污染天气;污染期间,500?hPa高度正距平达5 dagpm以上,海平面为负距平或与常年同期相当,逐日高空环流显示,河南境内多短波槽活动或长期受偏西到西南气流影响,地面一般为均压场或鞍型场,气压梯度小,风力弱,当高低空在此形势配置下时,均有利污染天气的出现或加重;当925?hPa与1000?hPa的风切1.5 m·s~(-1),近地层湍流扩散弱,大气维持静稳状态,有利污染天气的发生发展;L波段探空显示,当200 m以下有逆温,100 m以下风速3 m·s~(-1),贴地层相对湿度在50%左右时,有可能出现重污染天气;在污染持续期间若出现小雨量级降水时,污染会有所减弱,但不会彻底清除;当高空转为较强西北气流或地面有强冷空气南下时,即气压梯度显著增加、风力明显加大,污染天气将彻底结束。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号