首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The medium‐scale wave regime, consisting largely of zonal wavenumbers 5–7, frequently dominates the summer Southern Hemisphere tropospheric circulation. We perform a diagnostic study of this circulation as simulated by the Canadian Climate Centre (CCC) general circulation model (GCM). The analysis of Hövmöller diagrams, space‐time and zonal wavenumber spectra shows that the CCC GCM is able to simulate the observed medium‐scale wave regime.

The zonally averaged meridional eddy heat and momentum transports and the associated baroclinic and barotropic energy conversions are also examined. The distributions of the transports on the vertical plane agree well with the observations. After comparison with the observed December‐January‐February 1979 distributions, some quantitative differences remain: the heat transport is too weak aloft and too large near the surface, whereas the momentum transport tends to be too weak. The baroclinic and barotropic conversions show a maximum in the medium‐scale waves. The time evolution of the Richardson number of the mean flow suggests that the medium‐scale wave is due to a baroclinic instability.  相似文献   

2.
Abstract

This paper presents the seasonal dependence of the stationary and transient eddies of the GLAS/UMD GCM from a two‐year annual cycle integration.

The simulated Northern Hemisphere stationary waves are realistic in winter (below 250 mb) and in spring and fall; in winter a large anomalous ridge over the date‐line is noted above 250 mb. The model does not simulate the winter barotropic trough over eastern Canada. In summer the mid‐latitude stationary waves are poorly simulated (possibly owing to anomalous summer rainfall), but the monsoonal structure in the tropics is captured.

The stationary wave field at 500 mb in the Southern Hemisphere is not well simulated, with the range of season‐to‐season variability being much larger than observed. The zonally averaged stationary wave rms is realistic below 200 mb in winter and spring, but is less so in summer and autumn, possibly due to erroneous summertime precipitation.

The geographical distributions of 500‐mb transient and band‐pass height rms, of transient 850‐mb heat flux and of 200‐mb momentum flux in the Northern Hemisphere are well simulated except for summer. The latitude‐height dependence of height rms and low‐level transient heat flux is realistic in both summer and winter, but the transient momentum flux is not well simulated in summer. The mid‐level transient heat flux is too strong.

The overall pattern of transient activity at 500 mb in the Southern Hemisphere is reasonable in the GCM, although there is too much variability in the eastern Pacific, while the observed peak in rms in the New Zealand sector is displaced eastwards in the GCM. The latitude‐height dependence of transient height rms and transient fluxes of heat and momentum looks quite realistic, and is similar in accuracy to the Northern Hemispheric results.  相似文献   

3.
Abstract

Airborne measurements in the atmospheric boundary layer (ABL) above the marginal ice zone (MIZ) on the Newfoundland Shelf reveal strong lateral variations in mean wind, temperature and the vertical fluxes of heat and momentum under conditions of cold, off‐ice wind. Flux measurements in (and near) the surface layer indicate that the neutral 10‐m drag coefficient depends on ice concentration, ranging from 2 × 10‐3 at 10% coverage to 5 × 10‐3 at 90%. Furthermore, cross‐ice‐edge transects consistently show increasing wind speed, temperature and heat flux in the off‐ice direction, but the momentum flux may either increase or decrease, depending on the relative importance of surface buoyancy flux and roughness. For the conditions encountered in this experiment, it appears surface wave maturity does not have a significant influence on the drag coefficient in fetch‐limited regimes near the ice edge.  相似文献   

4.
Abstract

Meteorological and hydrographic data from the Indian River lagoon on the Atlantic coast of South Florida are used to describe the magnitude and relative importance of local heat flux processes in a bar‐built estuary for summer conditions. Over a 72‐day period in 1979, the energy gain by absorbed net insolation, averaging 316 W m‐2 is very nearly balanced by the energy loss due to net long‐wave radiation (‐61 W m‐2), sensible heat loss (‐54 W m‐2) and evaporation (‐194 W m‐2). Day‐to‐day imbalances, however, result in cycles of heating and cooling over time scales on the order of 4–6 days. Water temperatures fluctuate only ±0.5–1.0°C about the seasonal normal, reflecting relatively stable meteorological conditions. Heat energy stored in these estuarine waters in summer months is most highly correlated with the absorption of net insolation.  相似文献   

5.
Abstract

The sensitivity of the annual cycle of ice cover in Baffin Bay to short‐wave radiation is investigated. The Princeton Ocean Model (POM) is used and is coupled with a multi‐category, dynamic‐thermodynamic sea‐ice model in which the surface energy balance governs the growth rates of ice of varying thickness. During spring and summer the short‐wave radiation flux dominates other surface heat fluxes and thus has the greatest effect on the ice melt. The sensitivity of model results to short‐wave radiation is tested using several, commonly used, shortwave parameterizations under climatological, as well as short‐term, atmospheric forcing. The focus of this paper is short‐term and annual variability. It is shown that simulated ice cover is sensitive to the short‐wave radiation formulation during the melting phase. For the Baffin Bay simulation, the differences in the resulting ice area and volume, integrated from May to November, can be as large as 45% and 70%, respectively. The parameterization of the effect of cloud cover on the short‐wave radiation can result in the sea‐ice area and volume changes reaching 20% and 30%, respectively. The variation of the cloud amount represents cloud data error, and has a relatively small effect (less then ±4%) on the simulated ice conditions. This is due to the fact that the effect of cloud cover on the short‐wave radiation flux is largely compensated for by its effect on the net near‐surface long‐wave radiation flux.  相似文献   

6.
Abstract

The frequency and directional wave‐modelling capability of the Ocean Data Gathering Program (ODGP) deep water spectral wave model is assessed through comparison with WAVEC data gathered at Hibernia. Both qualitative and quantitative analyses indicate better agreement with observations during storms and with the wind‐driven component of the wave spectra. There is statistically poor modelling of the swell. A coherence analysis on derived wave vectors indicates that the ODGP model does not simulate geophysical variability with time‐scales less than about 30 h for overall spectral energy and less than 24 h for wave energy of frequency greater than 0.6 rad s?1 (0.095 Hz). The signals associated with swell waves are incoherent at nearly all time‐scales.  相似文献   

7.
Abstract

Values of incoming solar and long‐wave radiation measured at the vessel Quadra during the three phases of GATE are used to assess the daily performance of three models, one for solar and two for long‐wave radiation. The solar radiation model, which uses data on precipitable water and cloud amount at three levels in the atmosphere performed satisfactorily during the first phase but gave poor results in the other two phases when cumulonimbus became more dominant. Both the flux‐emissivity approach using measured and interpolated Upper air data and Paltridge's empirical procedure produced estimates of long‐wave radiation which compared very closely with the measurements.  相似文献   

8.
Abstract

Short‐ and long‐wave sky radiances measured with an all‐sky automatic recording radiometer are used to infer the sky cloud‐cover conditions at 10‐min intervals (night) and 20‐min intervals (day). During the day a simple net short‐wave detector provides supplementary data and can be employed as a clear‐sky indicator. This system of cloud detection is controlled by a PET microcomputer and provides a basis for the automatic computer programmed estimation of cloud cover.  相似文献   

9.
Abstract

In this study, a 24‐h high‐resolution numerical prediction of a prefrontal squall line associated with the 14 July 1987 Montreal flood is employed to investigate the origin and role of mesoscale gravity waves in the development of the squall system. The 24‐h integration using an improved mesoscale version of the Canadian regional finite‐element model is first validated against available observations; then non‐observable features are diagnosed to reveal the relationship between deep convection and gravity wave events. It is shown that the model reproduces well many aspects of the squall line, such as the propagation and organization of the convective system, as well as its associated precipitation. It is found that gravity waves are first excited near Lake Erie, following the initiation of early convective activity. Then, these waves propagate eastward and northeastward at speeds of 20 and 35 m s‐1, respectively. As the waves propagate downstream, deep convection radiates rapidly behind the wave trough axis, forming a long line of squall convection. Because the squall line moves with the gravity waves in a “phase‐locked” manner, deep convection has a significant influence on the structure and amplitude of the gravity waves. The sensitivity of the wave‐squall prediction to various parameters in convective parameterization is also examined.  相似文献   

10.
Abstract

Ocean backscatter data obtained with a Ku‐band airborne radar are presented along with coincident altimeter and directional wave spectral estimates. These data were collected using one sensor, NASA's radar ocean wave spectrometer (ROWS). The measurements are compared with an electromagnetic scattering model for perfectly conducting Gaussian random surfaces. The normalized radar cross‐section (NRCS) data cover those incidence angles (0–20°) where both quasi‐specular and Bragg scattering mechanisms are expected. Under certain conditions, identification and separation of these two mechanisms is possible. The scanning radar allows observations of the azimuthal variations in NRCS that are at times indicative of short‐scale wave generation in the wind direction.  相似文献   

11.
The heat exchange between ocean and atmosphere over cold water is studied by calculating all terms in the energy balance twice each day for the year 1971 for the Sable Island region.

The atmospheric long‐wave radiation is relatively constant because of frequent overcast and low clouds. The surface long‐wave balance is markedly negative in winter but slightly positive for a short time in summer, due to strong advection of warm moist air over the cold water. In winter, the turbulent fluxes are directed upwards and are strong, the upward fluxes beginning after the middle of August and lasting until mid‐March. The maximum daily values of latent heat flux are 400 to 500 ly day?1 (194 to 242 W m?2), about a third or a quarter of the magnitude over the warmer Gulf Stream water. The summer fluxes are fairly constant and directed downward.

The water of the Labrador Current in the Sable Island region warms substantially from March to September and conversely cools intensely in the period November‐January.

A comparison of the energy exchange for a current and for water without motion shows that the surface temperatures would be similar in summer, and the temperature drop would be about equal until November. From that time on, the surface temperature would level off for a water body with no current, but in actual conditions the surface temperature continues to drop to a late winter minimum of about 1°C.

Atmospheric advection of latent heat was calculated by assuming that the daily precipitation was always caused first by condensation of all locally evaporated water with any remainder being supplied by water‐vapour advection. The main cause for atmospheric heating in the Sable Island area was found to be condensation of imported water vapour. The region is, in summer, a marked sink for atmospheric heat and water content. For water it remains a sink even in winter. For sensible heat it becomes a source from November to March. The warming of the atmosphere is caused by release of latent heat of advected water vapour in the period February‐August. During the months September‐January the heat sources are both water‐vapour advection and surface turbulent terms.  相似文献   

12.
Abstract

During the Labrador Ice Margin Experiments, LIMEX ‘87 in March 1987 and LIMEX ‘89 in March and April 1989, the Canada Centre for Remote Sensing (CCRS) CV‐580 aircraft collected synthetic aperture radar (SAR) image data over the marginal ice zone off the east coast of Newfoundland, Canada. One aspect of these experimental programs was the observation of ocean waves penetrating into the marginal ice zone (MIZ). Based upon directional wavenumber spectra derived from SAR image data, the wave attenuation rate is estimated using SAR image spectra and compared with predictions from a model developed by Liu and Mollo‐Christensen (1988). The wave and ice conditions were considerably different in LIMEX ‘87 and LIMEX ‘89. However, the model‐data comparisons are very good for all ice conditions observed. Both the model and the SAR‐derived wave attenuation rates show a characteristic roll‐over at high wavenumbers. A model for the eddy viscosity is proposed, using dimensional analysis, as a simple function of ice roughness and wave‐induced velocity. Eddy viscosities derived from SAR and wave buoy data for the wave attenuation rate show a trend that is consistent with the proposed model.  相似文献   

13.
Abstract

With the object of providing an accurate set of open‐sea wave spectra in a variety of conditions, we deployed, in conjunction with CASP, an array of 9 wave buoys (3 directional, 6 non‐directional) along a 30‐km line offshore from Martinique Beach, N.S. A large set of high‐quality wave spectra was collected in conjunction with extensive meteorological information. The data set is unique in the sense that a large onshore swell component was normally present.

Offshore‐wind cases for three windows: ±5°, ±15° and ±30° with respect to the shore normal, have been considered. Wind speed was found to be a strong function of fetch, and attempts were made to allow for this in the analysis. Power‐law regressions have been produced of dimensionless sea energy, peak frequency and high‐frequency spectral level (the Kitaigorodskii “alpha” parameter) vs dimensionless fetch and wind speed (inverse wave age). The regressions are compared with earlier work: the Joint North Sea Waves Project (Jonswap) and the Canada Centre for Inland Waters (CCIW) Lake Ontario study.

The comparisons indicate that dimensionless wave energies, peak frequencies and alpha values in this experiment are comparable with those from earlier experiments; in spite of different wind analysis methods, the CASP and CCIW fetch‐limited growth laws are consistent within the contexts of the two experiments. Differences among the estimated parameters are as large within the analyses of the three windows as they are among the three experiments we compare.  相似文献   

14.
Abstract

A simple gravity wave drag parametriiation over mountainous terrain is tested for its ability to reduce the systematic errors of medium‐range weather forecasts. Following Boer et al. (1984), this parametrization is a function of the low‐level wind speed and stability, the local Froude number, and the variance of the subgrid‐scale orographie features.

A comparison study of ten 7‐day forecasts obtained with envelope orography, wave drag or standard orography, shows that wave drag is as effective as envelope orography in reducing the systematic errors. A further comparison where the combined effects of the wave drag and that of a complementary enhanced orography (that is one that includes only the subgrid‐scale elements not treated separately by wave drag) are taken into account shows this latter approach to be the most promising in reducing orographically‐related systematic errors.  相似文献   

15.
Abstract

The development of a tidal model for the west coast of Canada is described. The model is intermediate in resolution between coarse‐gridded global models and fine‐gridded local models; it provides a good representation of the main shelf regions and also includes a substantial area of the neighbouring ocean. The physical processes relevant to tides in both deep and shallow water are included. Calculations have been carried out for the M2 and K1 constituents and the model results were compared with extensive tide‐gauge observations and empirically based charts. For M2, the agreement between model results and observations is generally excellent, but for K1, which contains more small‐scale variability, the model results are not quite so good. The variability in K1 is associated with tidally generated continental shelf waves. Examination of the computed currents and energy fluxes suggests that shelf‐wave components are present in the model solution but, for the Vancouver Island shelf, their propagation is not reproduced accurately. This may be due to deficiencies in the model and/or to the influences of stratification and mean currents, which are neglected here. The model predicts that shelf‐wave components should also occur in diurnal tides on the Alaskan shelf.

The significance of the tide‐generating potential and advection are also examined and further work proposed.  相似文献   

16.
Abstract

Numerical simulations of the severe squall line of 14 July 1987 are discussed within the context of semi‐Lagrangian and semi‐implicit integrations. The fully compressible non‐hydrostatic Euler set of equations constitutes the basic dynamical framework of the numerical model. With elementary precipitation physics and with a generalized treatment of lateral boundary conditions, nested integrations simulate the observed structure of the squall line. The numerical solution and observations show a well organized precipitation system including a mesoscale fast‐propagating prefrontal squall line and a slow‐propagating system moving with the synoptic wave. The prefrontal squall line is seen to be a manifestation of the organization of an inertia‐gravity wave and has characteristics of a wave‐CISK mechanism. Owing to the interaction between the upper jet stream dynamics and moisture, the prefrontal perturbation is initiated locally and subsequently irradiates away from its point source. The high computational efficiency and the accuracy of the model emphasize its potential and demonstrate its value as an interesting tool for mesoscale modelling.  相似文献   

17.
《大气与海洋》2013,51(4):415-427
Abstract

An Mw = 7.2 earthquake occurred on 15 June 2005 (utc) seaward of northern California off the west coast of North America. Based on the earthquake location and source parameters, the West Coast and Alaska Tsunami Warning Center issued a tsunami warning for the region extending from the California‐Mexico border to northern Vancouver Island, British Columbia (the first tsunami warning for this region since the 1994 Mw = 8.2 Shikotan earthquake). Six tide gauges on the west coast recorded tsunami waves from this event, with a maximum trough‐to‐crest wave height of 27.7 cm observed at Crescent City, California. Waves of 2.5 to 6.5 cm were measured at the five other sites: Port Orford (Oregon), North Spit and Arena Cove (California), and Tofino and Bamfield (British Columbia). The open‐ocean Deep‐ocean Assessment and Reporting of Tsunami (DART) buoys, 46404 and 46405, recorded tsunami waves of 0.5 and 1.5 cm, respectively, closely matching wave heights derived from numerical models. Incoming tsunami wave energy was mainly at periods of 10 to 40 min. The observed tsunami wave field is interpreted in terms of edge (trapped) and leaky (non‐trapped) waves and a “trapping coefficient” is introduced to estimate the relative contribution of these two wave types. Due to the high (3000 m) water depth in the source area, approximately two‐thirds of the total tsunami energy went to leaky wave modes and only one‐third to edge wave modes. The improved response to and preparedness for the 2005 California tsunami compared to the 1994 Shikotan tsunami is attributable, in part, to the operational capability provided by the open‐ocean bottom‐pressure recorder (DART) system, higher quality coastal tide gauges, and the effective use of numerical models to simulate real‐time tsunamis.  相似文献   

18.
Abstract

Current meters and a thermistor chain deployed in the proximity of a drill‐ship over the continental shelf off Baffin Island revealed the presence of large amplitude internal waves. This paper reviews the properties of the internal waves, observed to propagate away from the coast and to coincide with the local low water phase of the tide at the drill‐ship. The observations are considered in terms of internal solitary wave models. A detailed comparison is presented of wave properties with a long‐wave model incorporating continuous stratification and shear.  相似文献   

19.
《大气与海洋》2013,51(3):187-201
Abstract

This paper investigates the formation and maintenance of the North Water Polynya, Baffin Bay in winter using a multi‐category sea‐ice model coupled with the Princeton ocean model. Monthly climatological atmospheric data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis provides the forcing. An objectively‐analysed climatology provides the initial ocean temperature and salinity. Wind stress drives the ice in a cyclonic gyre around northern Baffin Bay. Localized regions of thin ice form where wind drives ice away from coastlines or fast ice. The regions of thin ice are characterized by enhanced ice growth, exceeding 1.2 m mo?1. In the regions of thin ice, surface ocean heat flux is also enhanced and is between 30–60 W m?2. Surface heat flux is, in part, attributable to convective mixing and entrainment driven by ice growth. The surface heat flux reflects advection of the warm West Greenland Current. Heat and salt balances show that horizontal advective exchange counterbalances surface fluxes of heat and salt.  相似文献   

20.
Abstract

This study reports on tower measurements from the intertidal zone taken during the ice‐free period between August 1 and September 20, 1985. Sea and air temperatures showed ranges of 8 and 14°C, respectively, and both were colder during onshore than during offshore winds. Onshore winds were associated with a nearly saturated atmosphere whereas offshore ones were quite dry. Surface albedo was twice as great for low tide as for high tide. The ratio net/solar radiation was 13% less at low tide owing to both the larger albedo and the stronger long‐wave radiation loss. Heat fluxes into the bottom sediments were small with net gains in August and net losses in September. During the day, heat storage in the water was large and positive. This occurred even with the tide out, when the ponded water continued to warm. At night the water gave up heat, both for low and high tide, and especially late in the season. The latent heat flux was always positive and was largest by day during low tide and by night during high tide. The sensible heat flux was positive for onshore winds and often negative for offshore winds. Under all wind directions heat storage constituted 60% of net radiation, the latent heat flux 35% and the remainder was proportioned equally between the sensible heat flux and the flux into the bottom sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号