首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
利用FY-2E卫星水汽图像、常规气象观测资料和ERA-Interim再分析资料,将高层动力场和水汽图像结合,对山东半岛一次台风和冷空气相关的大暴雨过程进行了解译分析。结果表明:台风北上过程中,槽后冷空气入侵台风环流,涡旋云系与斜压叶状云相结合,低层出现锋生。在卫星水汽图像上,台风的非对称结构表现为涡旋北侧加强的湿上升运动和南侧入侵的干闯入,具有高位涡特征的水汽暗区是活跃的动力干带。高空急流带位于短波槽前叶状云向极一侧边界附近的湿上升区一侧,急流的增强与水汽图像上明暗边界的锐化有关,暴雨区位于动力干带前方的湿上升区和高空急流入口区的右侧。强降水发生时,动力干带引起的高层位涡扰动造成正涡度柱的强烈下伸,与台风主体环流的正涡度柱在暴雨区上空形成相互贯通的涡旋系统。位涡异常区前侧的上升运动与台风环流本身的上升运动叠加,有利于加强对流层暖湿气流的抬升。卫星水汽图像体现了高层天气尺度动力强迫的特征,指示重要动力过程的发展。将卫星水汽图像和高层位涡场结合进行解译,有助于从水汽图像上判别高空动力特征的演变,为台风暴雨监测提供参考信息。  相似文献   

2.
吴迪  寿绍文  姚秀萍 《湖北气象》2010,29(2):111-116
利用NCEP/NCAR1°×1°再分析资料、FY-2C卫星资料及常规气象观测资料,对一次典型东北冷涡暴雨过程中干侵入特征及其对东北冷涡暴雨发生发展的作用机制进行分析。结果表明,干侵入在卫星水汽图像上明显,为暗区,该暗区与大气动力场有较好的配置,与350hPa位涡高值区分布一致;干侵入区是高位涡和低湿的重叠区,干侵入前沿为降水落区,表明了干侵入与强降水落区存在密切联系;对流层高层低湿、高位涡的冷空气下传有利于冷涡暴雨的发生发展,暴雨强度随着干侵入强度增强而增大。同时冷平流效应非常重要,其对干侵入强度指数的变化起到主要作用。  相似文献   

3.
韦英英 《气象科技》2018,46(2):343-351
以2009年7月17—18日一次山东特大暴雨为研究对象,利用NCEP/NCAR再分析资料、FY-2C卫星水汽资料及常规气象观测资料,通过数字化卫星水汽图像与大气动力场相结合的方式,揭示干侵入在本次暴雨过程中的特征及其对暴雨发生、发展的作用机制。结果表明,此次强降水过程是在高空槽和低层低涡切变的有利形势下产生的。暴雨过程与干侵入密切相关,干侵入在对流层中高层随高度向东倾斜,强降水出现在干侵入前沿湿度梯度最大值处的湿区一侧。卫星水汽图像干侵入暗区与对应着350hPa位涡高值区、干冷区。与干侵入相伴随的高位涡下传,使低层气旋性涡度加强,气旋发展。高层干冷空气下传有利于干层的形成和维持,干层的存在加强了暴雨过程的对流不稳定,对暴雨的加强和发展起重要作用。  相似文献   

4.
卫星水汽图像上两次暴雨过程的干、湿特征对比分析   总被引:5,自引:3,他引:2  
蒋建莹  汪悦国 《气象》2014,40(6):706-714
2010年7月和2011年6月江南和华南地区出现了两次强降水过程,分别属于梅雨锋和季风槽暴雨过程。本文利用常规观测资料、NCAR/NCEP再分析资料和卫星水汽图像对比分析了这两次暴雨过程。分析结果表明:这两次暴雨过程的发生既有相似点,又有不同之处。水汽图像显示这两次暴雨过程中都有一条水汽带,暴雨云团均发生在水汽带中,并与低层850 hPa的θ_(se)≥350 K脊轴近于重合。江南暴雨过程中水汽带的北部边界与700 hPa的上升运动带、200 hPa的辐散带和负涡度带近于平行,强对流云团与低层上升运动中心和高层的辐散中心大致吻合;而华南暴雨过程中并无明显此特征。位涡的分析表明在华南暴雨中暗区对应对流层高层的高位涡带,水汽带对应低位涡带;而在江南暴雨中,高位涡带与暗区的对应没有华南暴雨明显。水汽图像上的干、湿特征的异同与环境场不同密切相关。  相似文献   

5.
宫宇  徐珺  代刊  杨寅  杨舒楠 《气象》2016,42(12):1498-1505
面对数值天气预报模式发展中的制约,如今气象界提出了预报员数据同化(data assimilation,DA)的理念,即将预报员的能力有机地融入到数值预报模式中以便发挥各自的优势。人工订正位涡改进模式初始场技术即充分体现了这一理念,其原理是利用了在中、高纬度气旋性环流场中,位涡(potential vortictiy,PV)场和卫星水汽图像(satellite water vapor imagery,WV)较好的对应关系检验数值预报,进而利用位涡的可反演性通过人工修改位涡场来订正数值预报,并已在部分国家实践中证明有着显著的改进模式预报性能的效果。本研究将通过分析对流层中高层的动力活跃区、位涡分布和卫星水汽图像暗区的关系检验模式偏差,进而通过人工订正位涡场和位涡反演,实现对模式初始场的修改,为预报员主观订正模式初始场、改进模式预报能力提供完整的技术流程。  相似文献   

6.
黄海波 《干旱气象》2005,23(3):22-25
根据位涡理论,选取2004年7月18~20日的一次由中亚低涡造成的盛夏暴雨过程做个例分析,对位涡与新疆地区降水和暴雨的关系进行了初步研究。结果表明:对流层高层干位涡能较好地反映冷暖空气的活动及天气系统的演变特征,位涡场比温度场、高度场能更清楚地示踪冷空气,这为研究冷空气的活动,特别是冷空气在触发暴雨中的作用提供了新的思路;对流层低层湿位涡与降水的强弱有良好的对应关系,当eθ线陡立时,易导致倾斜涡度发展,出现降水;当湿位涡MPV<0时,在eθ线陡峭密集区内易出现暴雨。  相似文献   

7.
利用T106数值预报产品对黑龙江省近年来夏季暴雨的湿位涡和螺旋度物理量场进行诊断分析,找出了不同环流背景下暴雨区与两者的对应关系,阐述了湿位涡与螺旋度在产生区域性暴雨与局地暴雨时的高低空配置情况。结果表明,500hPa的湿位涡和700hPa的螺旋度对暴雨的预报有较好的指示意义。  相似文献   

8.
内蒙古大兴安岭林区雷击火灾气候成因分析   总被引:2,自引:1,他引:1  
利用常规天气图、数值预报产品、卫星云图以及溃变理论的预报工具V-3θ图,对2005年6月30日至7月2日发生在青藏高原东北侧甘肃省区域性持续暴雨天气过程进行了诊断应用综合分析.结果表明:副热带高压西伸北抬外围西南风气流控制青藏高原东北侧,当东北低涡、西风带的冷空气与西南风交汇时,触发强对流;850~200hPa有深厚的水汽层;700 hPa稳定的低涡切变为暴雨提供了强烈持续的辐合上升运动;卫星云图表明持续性暴雨由多个相继生消的中尺度对流系统影响造成的.基于溃变理论的预报方法在西北区域性持续暴雨的起报、结束及落区有很好的预测能力.  相似文献   

9.
2013年雷州半岛一次罕见冬季暴雨过程的分析   总被引:1,自引:0,他引:1  
夏天竹  徐峰 《广东气象》2015,37(3):20-23
基于常规观测资料、卫星云图、多普勒雷达以及数值预报资料,分析了2013年12月14—16日雷州半岛冬季暴雨个例的环流背景和物理量场特征。结果表明:500 h Pa南支槽和副热带高压长期存在于雷州半岛两侧,低层低涡及暖式切变线稳定,为暴雨发生提供有利的环境条件;西南暖湿气流与高空槽引导的冷空气汇集,为暴雨区输送水汽和能量,暴雨初期水汽通量15 g·cm-1·h Pa-1·s-1;暖平流与正涡度平流共同作用,加强了暴雨的发展。  相似文献   

10.
利用FY-2E卫星水汽图像、常规观测资料和NCEP/NCAR 1°×1°再分析资料,针对山东半岛一次与台风相关的大暴雨事件中干冷空气的侵入特征进行分析。结果表明:台风北上与极地大陆气团交汇,是导致此次大暴雨发生的重要因素。干冷空气从西侧侵入台风环流,台风变性,斜压锋生,位能向动能转换,导致上升运动加强,有利于产生强降水。冷空气具有高位涡和低湿度的特点,水汽图像上的暗区、高层等熵面上的干区和高位涡区有良好的对应关系。水汽图像直观地反映了此次大暴雨过程的系统演变过程。台风云系与斜压叶状云结合,先形成新的涡旋云系,后演变成逗点云型。暗区指示的干冷空气不断发展,先形成干舌,后以干缝的形式卷入涡旋中心。在实际预报中,除了流型识别外,通过水汽图像还可以追踪干湿区及其边界等变化特征。通过连续时次的对比分析,可监测高空动力强迫,判断灾害性天气系统的发展演变。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

17.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

18.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

19.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号