首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Effect of ENSO on landfalling tropical cyclones over the Korean peninsula   总被引:2,自引:0,他引:2  
The effect of ENSO on landfalling tropical cyclones (TCs) over the Korean Peninsula is examined. It is found that although the landfalling frequency does not show any statistically significant difference among ENSO phases, the landfalling tracks are shifted northward in response to the decrease in Niño-3.4 index. In the neutral ENSO phase, many TCs pass through mainland China before landfalling over the Korean Peninsula due to the westward expansion of the western North Pacific subtropical high. Therefore, the landfalling TC intensity over the Korean Peninsula in the neutral phase is similar to that in the La Niña phase because more than half of those TCs made landfall over mainland China. However, it is found that the preceding winter ENSO phases are not related to the landfalling TC activity over the Korean Peninsula during summer.  相似文献   

2.
To investigate the statistical sensitivity distributions of tropical cyclone (TC) forecasts over the Korean Peninsula, total energy (TE) singular vectors (SVs) were calculated and evaluated over a 10-year period. TESVs were calculated using the fifth-generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5) and its tangent linear and adjoint models with a Lanczos algorithm over a 48-h period. Chosen cases were 21 TCs that affected the Korean Peninsula among 230 TCs that were generated in the western North Pacific from 2001 to 2010. Sensitive regions indicated by TESVs were mainly located near mid-latitude troughs and TC centers but varied depending on TC track and environmental conditions such as subtropical high and mid-latitude trough. The cases were classified into three groups by clustering TC tracks based on the finite mixture model. The two groups that passed through the western and southern sea of the Korean Peninsula had maximally sensitive regions in the mid-latitude trough and largely sensitive regions around the TC center, while the other group that passed straight through the eastern sea of the Korean Peninsula had maximally sensitive regions near the northeastern region of the TC center. Vertically, the former two clustered groups had the westerly tilted TESVs and potential vorticity structures under the mid-latitude troughs at the initial time, indicating the TCs were in a baroclinic environment. Conversely, the straight-moving TCs were not in a baroclinic environment. Based on the results in the present study, the TCs moving toward a fixed verification region over the Korean Peninsula have different sensitivity regions and structures according to their moving tracks and characteristic environmental conditions, which may provide guidance for targeted observations of TCs affecting the Korean Peninsula.  相似文献   

3.
This study examines the influence of the El Niño-Southern Oscillation (ENSO) on the frequency of landfalling tropical cyclones (TCs) in the Korean Peninsula during the TC season, June through October, of the years 1951–2010. An ENSO year is defined when the seasonal mean of the NINO3.4 sea surface temperature (SST) anomalies is greater/less than the typical seasonal mean by 0.5°C. The overall results of this study support that ENSO does not affect the landfalling TCs in Korea; the mean frequencies of the TC landfalls (influences) during El Niño and La Niña calculated over the entire analysis period are 1.1 (3.3) and 1.2 (3.0), respectively. The variations in the basin-wide distribution of TCs show that the influence of ENSO on TC distribution is extended over southeastern Japan with no significant signals coming from over the Korean Peninsula and the East China Sea. The change in the intensity of the landfalling TCs in the Korean Peninsula due to ENSO leads to the same conclusion as that in the frequency of the landfalling TCs. In addition, the same conclusion is obtained when the TC season duration is expanded to include the entire year and when different definitions of the ENSO years (e.g., based on the preceding or following winter NINO3.4 SST anomalies) are selected for analysis.  相似文献   

4.
In this study, regional climate changes for seventy years (1980–2049) over East Asia and the Korean Peninsula are investigated using the Special Reports on Emission Scenarios (SRES) B1 scenario via a high-resolution regional climate model, and the impact of global warming on extreme climate events over the study area is investigated. According to future climate predictions for East Asia, the annual mean surface air temperature increases by 1.8°C and precipitation decreases by 0.2 mm day?1 (2030–2049). The maximum wind intensity of tropical cyclones increases in the high wind categories, and the intra-seasonal variation of tropical cyclone occurrence changes in the western North Pacific. The predicted increase in surface air temperature results from increased longwave radiations at the surface. The predicted decrease in precipitation is caused primarily by northward shift of the monsoon rain-band due to the intensified subtropical high. In the nested higher-resolution (20 km) simulation over the Korean Peninsula, annual mean surface air temperature increases by 1.5°C and annual mean precipitation decreases by 0.2 mm day?1. Future surface air temperature over the Korean Peninsula increases in all seasons due to surface temperature warming, which leads to changes in the length of the four seasons. Future total precipitation over the Korean Peninsula is decreased, but the intensity and occurrence of heavy precipitation events increases. The regional climate changes information from this study can be used as a fruitful reference in climate change studies over East Asia and the Korean peninsula.  相似文献   

5.
Decadal changes in the subseasonal evolution and the phase-locked climatological intraseasonal fluctuation of summertime rainfall over the Korean Peninsula before and after the mid-1990s are investigated.The activity and the migration speed of the monsoon rain band over the East Asian region are altered in the recent decade,resulting in the drier conditions in late spring and the earlier onset of Changma.In early August when a climatological monsoon break was clear in the earlier decade,the precipitation has increased dramatically with a meridional coherency.The response to the enhanced convection over the South China Sea and southeastern China provides a favorable condition for more precipitation in early August through the changes in moisture transport and tropical cyclone passage.  相似文献   

6.
Large-scale air pollution transport (LSAPT) in the Yellow Sea region and their inflow onto the Korean Peninsula were observed through satellite images and ground measurements. LSAPT includes regional continental air-masses saturated with pollutants originating from China and subsequently landing on or passing through the Korean Peninsula. It is also possible to identify the distribution and transport patterns of LSAPT over the Yellow Sea. The ground concentrations for PM10, PM2.5 and CO measured at Cheongwon, located in the centre of south Korea, were compared with NOAA satellite images. Notably, the episodes observed of the LSAPT show a PM2.5 to PM10 ratio of 74% of the daily maximum concentrations. However, cases of duststorms were clearly distinguished by much higher PM10 concentrations and a ratio of 30% of PM2.5 to PM10 for daily maximum concentrations. For the episode on January 27, 2006, the inflow of a regionally polluted continental air-mass into the central and southwestern regions of the Korean Peninsula was observed sequentially at various ground observatories as well as by satellite. The north airflow dissipated the clouds over Mt. Halla on Jeju Island and further downwind, reducing air pollution and creating a von Kármán vortex.  相似文献   

7.
The present study examines a climate regime shift in the time series of the number of rainy days during August in the Korean Peninsula. The statistical change-point analysis indicates that a significant shift occurred in the time series around 1998, providing a rationale to divide it into two parts: 1975–1997 for the shorter rainy-day period and 1998–2012 for the longer rainy-day period. To examine the cause of recent rapid increases in the number of days with precipitation in August in the Korean Peninsula, differences in the averages of large-scale environments between the 1998–2012 period and the 1975–1997 period were analyzed.The differences in stream flows showed that anomalous cyclones were reinforced in the East Asian continent while anomalous anticyclones were reinforced in the western North Pacific at all layers of the troposphere. The anomalous anticyclones reinforced in the western North Pacific were associated with the western North Pacific subtropical high (WNPSH) developed a little more toward the Korean Peninsula recently. Consequently, the Korean Peninsula has been affected by anomalous south westerlies that supplied warm and humid airs from low tropical regions to the Korean Peninsula. The vertical thermal instability (warm anomaly at lower-level and cold anomaly at middle and upper-level) developed near the Korean Peninsula. In addition, upper tropospheric jets were reinforced further recently near the Korean Peninsula to provide good environments for development of upward flows. The frequency of TCs that affect the Korean Peninsula in August also increased rapidly since 1998.  相似文献   

8.
In this study, winter precipitation variability associated with the El Niño-Southern Oscillation (ENSO) over the Korean Peninsula was investigated using a 5-pentad running mean data because significant correlation pattern cannot be revealed using seasonal-mean data. It was found a considerably significant positive correlation between Niño3 sea-surface temperature and precipitation during early winter (from Mid-November to early-December), when the correlation coefficient is close to 0.8 in early-December; the correlation is distinctively weakened during late winter. It is demonstrated that such sudden intraseasonal change in relation to ENSO is associated with the presence of anticyclonic flow over the Kuroshio extension region (Kuroshio anticyclone). In early winter, there is strong southerly wind over the Korean Peninsula, which is induced by the Philippine Sea anticyclone and Kuroshio anticyclone. However, in January, although the Philippine Sea anticyclone develops further, the Kuroshio anticyclone suddenly disappears; as a result, the impact of ENSO is considerably weakened over the Korean Peninsula. These results indicate that the Kuroshio anticyclone during El Niño peak phase plays a critical role by strongly affecting Northeast Asia climate, including the Korean Peninsula. In addition, it is also found that there are distinctive interdecadal changes of the relationship between ENSO and precipitation over the Korean Peninsula. In particular, the strong correlation in early winter is clearer in the recent 30 years than that in the previous period of 1950–1979.  相似文献   

9.
Preliminary analysis with a solar radiation model is generally performed for photovoltaic power generation projects. Therefore, model accuracy is extremely important. The temporal and spatial resolutions used in previous studies of the Korean Peninsula were 1 km × 1 km and 1-h, respectively. However, calculating surface solar radiation at 1-h intervals does not ensure the accuracy of the geographical effects, and this parameter changes owing to atmospheric elements (clouds, aerosol, ozone, etc.). Thus, a change in temporal resolution is required. In this study, one-year (2013) analysis was conducted using Chollian geostationary meteorological satellite data from observations recorded at 15-min intervals. Observation data from the intensive solar site at Gangneung-Wonju National University (GWNU) showed that the coefficient of determination (R²), which was estimated for each month and season, increased, whereas the standard error (SE) decreased when estimated in 15-min intervals over those obtained in 1-h intervals in 2013. When compared with observational data from 22 solar sites of the Korean Meteorological Administration (KMA), R2 was 0.9 or higher on average, and over- or under-simulated sites did not exceed 3 sites. The model and 22 solar sites showed similar values of annual accumulated solar irradiation, and their annual mean was similar at 4,998 MJ m?2 (3.87 kWh m?2). These results show a difference of approximately ± 70 MJ m?2 (± 0.05 kWh m?2) from the distribution of the Korean Peninsula estimated in 1-h intervals and a higher correlation at higher temporal resolution.  相似文献   

10.
利用1963~1988年中国木本草本植物物候观测资料,运用趋势分析和相关分析方法,研究了26年中国20个物候站点植物始展叶期、始花期、始落叶(黄枯)期物候变化特征及其对降水变化的响应。结果表明:1963~1988年我国植物始展叶期、始花期、始落叶(黄枯)期均以推迟趋势为主;春季始展叶期、始花期,东北、华北以提前趋势为主,其他各区以推迟趋势为主;秋季始落叶(黄枯)期华北以提前趋势为主,其他各区以推迟趋势为主;1980年前后的物候期变化与1963~1988年的变化相同;春季物候期平均值差异多在-3~6天,秋季物候期平均值差异多在-10~10天;我国植物的始展叶期、始花期、始落叶(黄枯)期对于之前月份的累积降水量有不同程度的响应,物候期对该物候期前1月至前3月的累积降水量响应最为明显;我国春季物候期与降水量以正相关为主,秋季物候期与降水量则以负相关为主。   相似文献   

11.
Distribution of seasonal rainfall in the East Asian monsoon region   总被引:8,自引:1,他引:8  
Summary ?This study deals with the climatological aspect of seasonal rainfall distribution in the East Asian monsoon region, which includes China, Korea and Japan. Rainfall patterns in these three countries have been investigated, but little attention has been paid to the linkages between them. This paper has contributed to the understanding of the inter-linkage of various sub-regions. Three datasets are used. One consists of several hundred gauges from China and South Korea. The second is based on the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP). The two sources of precipitation information are found to be consistent. The third dataset is the NCEP/NCAR reanalysis 850-hPa winds. The CMAP precipitation shows that the seasonal transition over East Asia from the boreal winter to the boreal summer monsoon component occurs abruptly in mid-May. From late March to early May, the spring rainy season usually appears over South China and the East China Sea, but it is not so pronounced in Japan. The summer monsoon rainy season over East Asia commonly begins from mid-May to late May along longitudes of eastern China, the Korean Peninsula, and Japan. A strong quasi-20-day sub-seasonal oscillation in the precipitation appears to be dominant during this rainy season. The end date of the summer monsoon rainy season in eastern China and Japan occurs in late July, while the end date in the Korean Peninsula is around early August. The autumn rainy season in the Korean Peninsula has a major range from mid-August to mid-September. In southern China, the autumn rainy season prevails from late August to mid-October but a short autumn rainy season from late August to early September is noted in the lower part of the Yangtze River. In Japan, the autumn rainy season is relatively longer from mid-September to late October. The sub-seasonal rainfall oscillation in Korea, eastern China and Japan are explained by, and comparable to, the 850-hPa circulation. The strong westerly frontal zone can control the location of the Meiyu, the Changma, and the Baiu in East Asia. The reason that the seasonal sea surface temperature change in the northwestern Pacific plays a critical role in the northward advance of the onset of the summer monsoon rainfall over East Asia is also discussed. Received October 5, 2001; revised April 23, 2002; accepted May 11, 2002  相似文献   

12.
Sandstorms in the desert and loess regions of north China and Mongolia, as well as the associated dustfall episodes on the Korean Peninsula, were monitored in 2005. The ground mass concentrations of PM10 and PM2.5 were analyzed during dustfall episodes at Cheongwon, in central south Korea, based on synoptic features at surface, 850 hPa and 500 hPa levels. A total of seven dustfall episodes lasting eleven days were observed and the mass concentration ratios of PM2.5 and PM10 during dustfall episodes were classified into a severe dustfall episode (SDE) and a moderate dustfall episode (MDE) depending upon two synoptic features. The main synoptic feature was for SDEs, which occurred frequently under a surface anticyclone and cyclone located in the west and east of the Korean Peninsula with large amplitude trough at 500 hPa over the northern Korean Peninsula. The sandstorms at the source headed directly to Korea via a strong N-NW wind without passing through any large cities or industrial areas of east China. The PM10 mass concentration sharply increased during the SDEs; however, the fine aerosol fraction of PM2.5 levels was relatively low with 13.6% of the mass concentration. In a synoptic feature for MDEs, a slow moving cyclone headed to Korea via the industrial areas of northeastern China under a small amplitude trough at a 500 hPa level. A weak anticyclone was also located over China. MDEs showed low mass concentrations of coarse PM10 particles and large fraction of fine PM2.5 particles at 46.3%.  相似文献   

13.
The spatial and temporal variations in cloud-to-ground (CG) lightning and precipitation during the summer monsoon months in Korea have been analyzed in relation to the regional synoptic weather conditions. The lightning data used in this study were collected from a lightning detection network installed by the Korean Meteorological Administration, while the precipitation data were collected from 386 Automatic Weather Stations spread over the entire Korean Peninsula during 2000 to 2001. A distinctive morning peak of precipitation is observed over the midwest region of Korea. Along the east coast, little precipitation and CG flash counts are found. Despite the strong afternoon peaks of convective rainfall due to the high elevation over the southern inland region, the south coast shows nocturnal or early morning peaks, which represents a common oceanic pattern of flash counts. In 2000, the nighttime peak for lightning counts dominates over the southern area, while the afternoon peak was strong in the midland during the summer, mainly due to the northward transportation of moisture to the Korean Peninsula. Conversely, the strong afternoon peak for the southern region was confronted with early morning peaks in the midwestern region during 2001. The eastward transport of moisture has been analyzed and was considered to be dominant in 2001. The study of several warm and cold type fronts in 2000 and 2001 indicate that the warm type fronts in 2000 were associated with very little lightning, while the cold type fronts appeared to be responsible for the occurrence of abundant lightning in 2001, thereby, indicating that the warm and cold type fronts were representative of the local lightning distribution in the respective years.  相似文献   

14.
This study investigates the characteristics of a heavy snowfall event over the southwestern part of the Korean Peninsula on 4 December 2005. The snowstorm was a type of mesoscale maritime cyclone which resulted from barotropic instability, and diabatic heating from the warm ocean in continental polar air masses. Based on surface observations, radiosonde soundings, MTSAT-1R satellite data and the 10-km grid RDAPS (Regional Assimilation and Prediction System based on the PSU/NCAR MM5) data, the evolution of the mesocyclone is explained by the following dynamics; (1) In the initial stage, the primary role in the cyclogenesis process of the mesocyclone is a barotropic instability in the horizontal shear zone. (2) In the developing stage, the mesocyclone moves and deepens into a baroclinic zone corresponding to the surface heating and moistening. (3) In the mature stage, it is found that the mesocyclone is intensified by the destabilization caused by enhanced low-level heating and condensation, the moisture flux convergence, and the interaction between upper and lower-level potential vorticity anomalies. We suggest that a checklist with stepwise indicators responsible for development be prepared for the forecasting of heavy snowfall over the southwestern part of the Korean Peninsula.  相似文献   

15.
Previous studies suggest that spring SST anomalies over the northern tropical Atlantic(NTA) affect the tropical cyclone(TC) activity over the western North Pacific(WNP) in the following summer and fall. The present study reveals that the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is not stationary. The influence of spring NTA SST on following summer–fall WNP TC genesis frequency is weak and insignificant before, but strong and significant after, the late 1980 s. Before the late 1980 s, the NTA SST anomaly-induced SST anomalies in the tropical central Pacific are weak, and the response of atmospheric circulation over the WNP is not strong. As a result, the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is insignificant in the former period. In contrast,after the late 1980 s, NTA SST anomalies induce pronounced tropical central Pacific SST anomalies through an Atlantic–Pacific teleconnection. Tropical central Pacific SST anomalies further induce favorable conditions for WNP TC genesis,including vertical motion, mid-level relative humidity, and vertical zonal wind shear. Hence, the connection between NTA SST and WNP TC genesis frequency is significant in the recent period. Further analysis shows that the interdecadal change in the connection between spring NTA SST and following summer–fall WNP TC genesis frequency may be related to the climatological SST change over the NTA region.  相似文献   

16.
青藏高原的热力和动力作用对亚洲季风区环流的影响   总被引:22,自引:1,他引:21  
利用NCEP/NCAR再分析资料,研究了青藏高原热状况的季节变化、动力和热力作用对周围环流,特别是对亚洲热带季风环流的影响。高原对西风带的机械作用在冬季最强,春季次之。冬季的机械作用形成以高原为主,南侧气旋性、北侧反气旋性的"偶极子"偏差环流,它比传统认识的爬坡、绕流的影响范围大得多,遍及东亚的高、低纬度。随着西风带的北移和高原总加热在4月由负变正,南侧气旋性偏差环流增强并逐渐北移,6月形成气旋盘踞整个高原的夏季型。在高原南侧,高原冬季偶极型、夏季加热的作用导致孟加拉湾地区常年存在印缅槽,使得印度半岛的感热加热始终强于中南半岛,而中南半岛上空的潜热加热大于印度半岛。印缅槽的演变存在明显的半年周期,证明2月初和8月初的较强低压槽分别对应冬季高原最强的动力强迫和夏季高原最强的热力强迫。对低纬经向风场的分析还表明,季风爆发前高原的热力作用尤为重要,是导致江南春雨的形成,亚洲季风最早在孟加拉湾东部爆发,最后在印度半岛爆发的原因。  相似文献   

17.
利用1961—2016年华东地区106个气象观测站的日降水数据和再分析资料,分析引起山东半岛夏季降水异常的大气环流型及其与前期下垫面因子(海温和土壤湿度)的关系,结果发现:1)当孟加拉湾出现西南风异常,日本列岛以南和贝加尔湖西南侧地区分别呈反气旋和气旋式环流异常时,加强了向山东半岛的水汽输送,配合区域大气上升运动异常最终导致山东半岛夏季降水偏多;反之,当孟加拉湾出现西北风异常,日本列岛以南和贝加尔湖西南地区分别呈气旋和反气旋式环流异常时山东半岛降水偏少。2)孟加拉湾和北太平洋中部关键区的对流层整层位势高度与下垫面海温自春季持续至夏季存在显著正相关,当两个地区的整层位势高度均呈正异常时,分别对应夏季孟加拉湾的强西风气流和日本列岛以南的反气旋环流异常。3)区域土壤湿度异常引起的感热和潜热通量异常,可能是引起贝加尔湖关键区位势高度和山东半岛局地对流异常的原因:贝加尔湖西南地区土壤湿度偏大时,其上空对流层位势高度为负异常;山东半岛地区土壤湿度偏大时,其上空对流层大气出现异常上升运动。4)利用关键区春季下垫面因子(海温和土壤湿度)建立山东半岛夏季降水的统计预测模型,留一交叉检验的距平同号率达到75%。这些结果可为山东半岛夏季降水预测提供重要参考。  相似文献   

18.
A numerical model of the drift ice concentration and thickness redistribution in the White Sea is described for the fall, winter, and spring periods. The results of the author’s testing are given. The method accuracy and efficiency are calculated by means of comparison with the multiyear mean data and the data of aircraft ice observations.  相似文献   

19.
In this study, changes in climatological conditions around the Korean Peninsula are estimated quantitatively using various types of high order statistical analyses. The temperature data collected from Incheon station have been analyzed for the assessment of the climate variation. According to our analysis, the climate changes observed over the Korean Peninsula for the last century are similar to the global observational data in many respects. First of all, the warming trend [ 1.5℃ (100 yr)^-1] and the overall evolving pattern throughout the century are quite similar to each other. The temperature change in the Korean Peninsula is about two to three times larger than that of the global scale which may partially be ascribed to the influence of urbanization at mid and high latitudes. In this work, a new Winter Monsoon Index (WMI) is suggested based on the European continental scale circulation index (EU1) pattern. Our WMI is defined as the normalized sea level pressure (SLP) difference in the winter period between the centers of the East Sea and west of Lake Baikal in Siberia, the two eastern centers of the EU1 action patterns. A strong similarity is found between the time series of the WMI and surface air temperature at Incheon. The WMI has decreased gradually since the 1920s but has shifted to a rapid increasing trend in the last two decades; it was in fact accompanied by a weakening of the Siberian High and a decreasing of the northerly during winter. Our findings of the close correlations between the surface air temperature at Incheon and the WMI strongly indicate that our newly suggested index is unique and can be used as an efficient tool to predict climate variability in Korea.  相似文献   

20.
Summary This study investigates the capability of the regional climate model RegCM3 to simulate surface air temperature and precipitation over the Korean Peninsula. The model is run in one-way double nested mode, with a 60 km grid point spacing “mother” domain encompassing the eastern regions of Asia and a 20 km grid point spacing nested domain covering the Korean Peninsula. The simulation spans the three-year period of 1 October 2000 through 30 September 2003 and the boundary conditions needed to run the mother domain experiment are provided from the NCEP reanalysis of observations. The model results are compared with a high density station observation dataset to examine the fine scale structure of the surface climate signal. The model shows a good performance in capturing both the sign and magnitude of the seasonal and inter-annual variations of the surface variables both over East Asia as a whole and over the Korean Peninsula in the nested system. Some persistent biases are however present. Surface temperature is systematically underestimated, especially over mountainous regions in the warm season. This feature may be due to the relatively coarse representation of the Korean topography. The simulated precipitation over the mother domain successfully reproduces the broad spatial pattern of observed precipitation over East Asia along with its seasonal evolution. On the other hand, fine scale details from the nested results show a varying level of quality for the different individual years. Because of the better resolved topographic forcing, the increased resolution of the nested model improves the spatial agreement with the fine scale observation fields for temperature and cold season precipitation. For summer monsoon precipitation the simulation of individual monsoon convective events and tropical storms is however more important than the topographic forcing, and therefore the performance of the nested system is more case-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号