首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
河北石家庄市近地层臭氧浓度特征及气象条件分析   总被引:1,自引:0,他引:1  
利用2016年3月至2018年2月河北石家庄市环境监测站O_3及其前体物质量浓度逐时和逐日观测资料,以及气象站逐日气象观测数据,分析石家庄市近地层O_3质量浓度的时间变化特征及其与前体物NO_2、CO和气象条件的关系。结果表明:石家庄市O_3污染2017年比2016年严重,2017年比2016年O_3超标日数增加30 d,超标率上升8%,O_3年平均质量浓度上升17μg·m~(-3)。O_3质量浓度具有明显的季节变化特征,自夏季、春季、秋季、冬季依次降低,5—9月O_3质量浓度较高,平均值超过160μg·m~(-3),6月达到峰值208μg·m~(-3)。O_3质量浓度的日变化表现为单峰型分布,最低值出现在07:00左右,峰值在14:00—16:00。太阳辐射强、气温高、日照时数长、能见度好、无降水和相对湿度较低的条件下,石家庄市易出现O_3浓度超标天气。前体物NO_2、CO与O_3质量浓度之间夏季呈现显著正相关,而冬季则呈显著负相关。  相似文献   

2.
O_3和PM_(2.5)是影响长三角地区空气质量的主要污染物。利用2016年33个城市大气环境监测站6项污染物的小时浓度及4个省会城市的气象数据进行统计分析,研究了该地区O_3和PM_(2.5)浓度的时空分布特征及其影响因素。结果表明:长三角地区O_3年平均浓度为50~73μg·m~(-3),平均为61μg·m~(-3);除芜湖和宣城外,其余31城市均存在不同程度的超标状况,超标率为0.34%~18.86%,平均为5.68%。O_3在5月和9月达到浓度高值;四季O_3日变化均呈单峰型,峰值出现在15∶00,夏季O_3峰值浓度最高值为157μg·m~(-3)。O_3浓度沿海城市整体高于内陆城市;夏季宿迁—淮安—滁州片区O_3污染较重。O_3与NO_2、CO显著负相关,且与NO_2相关性较强;O_3与气温、日照时数显著正相关,与相对湿度、降水呈负相关。PM_(2.5)年平均浓度在25~62μg·m~(-3)范围内,平均为49μg·m~(-3);各城市均出现PM_(2.5)超标,滁州PM_(2.5)超标率最大,为23.91%。PM_(2.5)在3月和12、1月达到浓度峰值;其日变化呈双峰型,09∶00—10∶00和22∶00—23∶00达到峰值。冬季徐州PM_(2.5)浓度最高,为102μg·m~(-3)。PM_(2.5)与NO_2、CO、SO_2、PM_(10)显著正相关,与气温、风速、降水负相关。  相似文献   

3.
气象因素对西安市西南城区大气中臭氧及其前体物的影响   总被引:1,自引:0,他引:1  
利用西安市2015年连续观测的O_3及其前体物NO、NO_2和CO质量浓度数据,分析其随时间变化的污染特征,结合气象要素进行相关性分析并拟合方程。结果表明:受局地光化学反应的影响,西安市夏季O_3浓度最高,且因O_3-8h造成的污染占总污染天数的1/3。冬季光化学反应减弱,但前体物排放源增强,NO、NO_2和CO出现最大浓度值。O_3浓度日变化呈单峰型,最高值出现在16:00左右,夜间维持较低水平。NO、NO_2和CO的日变化呈现白天低,夜间高的双峰型。O_3与温度、风速呈正相关,与相对湿度呈负相关,NO、NO_2和CO与风速呈负相关。受上风向污染源的影响,在东北、偏北和偏东气流控制下,易出现O_3浓度高值。夏季O_3质量浓度与气象要素的拟合度较好,可利用常规气象要素对O_3浓度趋势进行预测分析。  相似文献   

4.
李苹  余晔  赵素平  董龙翔  闫敏 《高原气象》2019,38(6):1344-1353
利用2015-2017年环保部发布的近地面臭氧(O_3)和其他3种污染物[粒径小于2. 5μm的颗粒物(PM_(2.5))、一氧化碳(CO)、二氧化氮(NO_2)]小时浓度数据和美国国家气候资料中心收集的气象要素监测数据,分析了中国近地面O_3污染状况,并用逐步回归方法分析了影响O_3重污染区域夏季近地面O_3浓度的因素。结果表明,2015-2017年我国O_3日最大8 h滑动平均浓度(O_3MDA8)年平均值分别为83.02±16. 79,87. 05±14. 32和94. 70±13. 89μg·m~(-3)。O_3MDA8浓度逐年增长(增长率14. 07%),其中冬季增长最快(增长率范围14. 67%~34. 32%),夏季增长最慢(增长率范围2. 32%~14. 16%)。京津冀、长三角、山东半岛、川渝和中原地区近地面O_3污染较重,影响这5个区域近地面O_3浓度的主要因素为温度、相对湿度和PM_(2.5),除此之外京津冀和川渝地区的近地面O_3浓度受NO_2影响明显,中原地区的近地面O_3浓度受CO影响明显。  相似文献   

5.
利用2004~2006年杭州主城区环境空气监测资料,研究了O_3、NO_2和CO浓度的分布特征和时间变化规律,结果表明,杭州主城区3年的O_3、NO_2、CO的年均浓度都不大,分别为40、60、1400μg·m~(-3).四季中O_3、NO_2和CO浓度相差较大,O_3是夏季高冬季低,NO_2和CO则是秋季较高,夏季较低.O_3、NO_2和CO浓度日变化也很明显,其中O_3是单峰形态,NO_2和CO为双峰形态.不同天气条件下O_3与烃类的关系研究表明,晴天时烃类浓度减少,O_3浓度明显增加;阴天时O_3浓度较低,烃类浓度较高,它们的变化不大.白天和夜晚不同风速时O_3、C_2-C_(12)的浓度变化不同,白天风速增大时C_2-C_(12)浓度减小,O_3浓度增加;晚上无此变化.  相似文献   

6.
利用佛山市2014至2018年8个环境国控站观测的近地面6种污染物质量浓度数据,结合同期气象数据,采用多种统计方法,分析佛山近5年来近地面O_3质量浓度日、周、月的变化特征,同时探讨了主要影响因子和气象要素阈值。结果表明:(1)佛山市O_3污染天数和浓度均呈现增加趋势;(2)日变化表现为单峰分布,峰值出现在15:00前后,出现时间和其它城市较一致,其前体物CO、NO_2则在15:00前后出现谷值;(3)O_3前体物质量浓度休息日高于工作日,O_3质量浓度周末低于工作日,和广州表现较为一致;(4)当日均气温高于26℃、相对湿度介于40%~70%、气压低于1 010 hPa、日均风速低于2 m/s、日照时数大于6.5 h时,有利于O_3生成并造成臭氧超标;(5)佛山O_3质量浓度与PM_(10)、PM_(2.5)、SO_2质量浓度呈正相关。  相似文献   

7.
利用阿勒泰平原地区阿克达拉大气本底站2010年1月1日—2016年12月31日的臭氧质量浓度数据与PM_(10)等相关气象资料相结合,对臭氧质量浓度的日、周、月、季节、年变化特征以及影响臭氧浓度变化的主要因素进行了分析。结果分析表明:臭氧每小时平均质量浓度日变化规律呈显著单峰型,夜晚的变化较小,白天变化较大,01:00前后达到最小值,16:00左右达到峰值;臭氧每日平均质量浓度变化不具有较为明显的"周末效应"现象,峰值出现在星期六,日平均质量浓度为63.2μg·m~(-3),最低值出现在星期一,日平均质量浓度为60.0μg·m~(-3),日平均质量浓度最高值和最低值仅相差3.2μg·m~(-3);臭氧月平均质量浓度最高出现在2014年5月,为85.1μg·m~(-3),最低月平均质量浓度出现在2015年11月,为32.2μg·m~(-3);春、夏季臭氧质量浓度较高,秋季和冬季明显低于春季和夏季;2010—2016年臭氧浓度趋势线整体呈下降趋势,其中2012—2014年臭氧浓度连续月变化有明显的单峰型年度变化规律;臭氧浓度与PM_(10)质量浓度变化具有明显的逆向变化趋势,同时存在时间变化上的延迟性,并且臭氧的浓度变化早于PM_(10)质量浓度的变化。  相似文献   

8.
利用差分吸收光谱仪DOAS(differential optical absorption spectroscopy),对2007年11月-2008年1月南京北郊大气SO_2、NO_2和O_3进行了观测.结合Parsivel降水粒子谱仪和自动气象站的资料,对冬季大气污染气体的浓度变化规律及降水和风速风向对其的影响进行了分析.结果表明,南京北郊大气SO_2浓度较高,呈明显双峰特征,分别在12时(北京时,下同)和00时达最大,受附近排放源的影响最大,东风及南风时比静风时SO_2浓度更高.降水对SO_2湿清除效果明显,清除系数平均为0.168h~(-1).NO_2气体呈明显单峰特征,在18时达最高值.南京北郊是NO_2源区之一,主要受附近高速公路汽车尾气排放源的影响.静风时NO_2浓度最高.O_3浓度受NO_2的影响较明显.O_3日变化呈单峰特征,在15时达最大值,静风时O_3浓度最低.降水对O_3的间接影响较明显,在降水时,白天由于太阳辐射较弱,O_3浓度降低;夜晚NO浓度较低,使得O_3浓度升高.  相似文献   

9.
江苏臭氧污染特征及其与气象因子的关系   总被引:3,自引:0,他引:3  
本文利用2013—2017年江苏70个环境监测站资料和13个国家气象观测站常规观测资料,研究江苏臭氧污染特征及其与气象因子的关系。结果表明:江苏臭氧质量浓度和超标率逐年增长,其空间分布特征由东部沿海城市大于西部内陆城市逐渐转为东西部城市差异不明显,南部城市超标率总体高于北部;4—9月臭氧质量浓度处于较高水平,夏季超标占一半以上;日变化呈"单峰单谷"型,15时(北京时间)前后超标率最大,O_(3-8 h)较O_(3-1 h)峰值推后3—4 h;O_3对空气质量不达标的贡献率呈逐年上升趋势;臭氧质量浓度与颗粒物和前体物NO_x日变化呈反相关,且存在"周末效应"。江苏地区臭氧质量浓度总体与气温正相关,相对湿度负相关,气温高于25℃、相对湿度30%~50%区间、风速低于4 m·s~(-1)以下易出现高浓度臭氧;苏南的城市主要在东南风向对应较高的值,而苏北城市多在西南风向对应的较高臭氧质量浓度值。  相似文献   

10.
通过对2015年1—12月上海崇明岛崇南地区颗粒物(PM_(2.5)、PM_(10))浓度的连续监测,研究了PM_(2.5)、PM_(10)在不同季节的动态变化特征及与其他因子(SO_2、NO_2、O_3)的相关性,分析了风向风速和降雨对颗粒物浓度的影响。结果表明:崇明岛PM_(2.5)和PM_(10)浓度的季节变化明显,呈现冬季的春季的秋季的夏季的的特征,冬季PM_(2.5)和PM_(10)小时浓度均值分别为0.058 mg/m~3和0.085 mg/m~3,夏季PM_(2.5)和PM_(10)均值分别为0.034 mg/m~3和0.054 mg/m~3。PM_(2.5)和PM_(10)浓度分别与SO_2浓度和NO_2浓度显著正相关,与O_3显著负相关。全年来看,在西南风向时PM_(2.5)和PM_(10)浓度较高,这主要受该方向上游吴淞工业区、宝钢、石洞口电厂、罗店工业区等工业排放影响;从高浓度颗粒物(PM_(2.5)质量浓度≥0.115 mg/m~3)来向看,北和西北风向时出现高浓度颗粒物的频率最高,这主要是受到我国北方采暖季大气颗粒物输送过程对崇明岛区域的脉冲式污染影响所致;PM_(2.5)、PM_(10)实时浓度与相应的风速呈显著负相关。降雨量大于5 mm或持续3 h及以上的连续降雨对大气颗粒物起到显著的湿清除作用,降雨后PM_(2.5)和PM_(10)质量浓度分别降低了68.0%和66.9%,降雨时和雨后PM_(2.5)浓度为0.025~0.033 mg/m~3,均低于我国环境空气PM_(2.5)的一级浓度限值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号