首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用2008—2018年逐年11月至翌年3月常规气象观测资料,从天气形势配置、降水相态与特征层气温、0 ℃层高度和层结厚度的关系等进行分析,归纳了黄山地区冬半年雨、冻雨、雨夹雪和雪四类降水相态的判别依据,并利用一次雨雪转换天气过程对判据进行了检验。结果表明,黄山地区固态降水和固液混合型降水主要发生在1—2月。850 hPa高度层及以下各层气温对雨雪转换的判别效果较好,当850、925、1 000 hPa特征层气温和地面气温分别大于等于-3.9、-2.6、0.5、1 ℃时可判定为雨,各层气温继续降低将出现雨夹雪或雪。当0 ℃层高度在1 000 hPa高度层以上时可能出现雨,反之出现雨夹雪或雪。此外,厚度层结也能较好地区分雨和雨夹雪或雪。冻雨(冰粒)的判据与其他降水相态的判据不同之处是在700 hPa高度层附近存在融化层。判据能较好地区分黄山地区不同降水相态,但对冻雨和冰粒的识别能力相对较弱。  相似文献   

2.
我国中东部平原地区临界气温条件下降水相态判别分析   总被引:1,自引:0,他引:1  
陈双  谌芸  何立富  郭云谦 《气象》2019,45(8):1037-1051
基于2001—2013年地面观测和探空资料,对地面气温位于0~2℃(以下称临界气温)我国降雪的时空分布及其与降雨的垂直热力特征进行了研究,引入了决策树判别方法对上述条件下雪和雨进行了判别分析,结果表明:临界气温下降雪出现频率总体高于降雨、雨夹雪出现频率,且在我国华北南部至江南北部的中东部地区分布较多,年均可达7.69~15.38站次;临界气温下,降水相态为雨或雪对应的平均温度廓线最大差异位于650 hPa附近,且地面气温较低时,平均温度差异更明显,平均湿度廓线差异则主要位于低层,且在地面气温较高时,平均湿度差异更明显;临界气温下,降水相态为雨时,地面上空存在暖层样本占比,较降水相态为雪时更高,且降雨时暖层主要位于中层,降雪时暖层则主要位于低层,降雨时其暖层强度显著大于降雪时暖层强度;在临界气温下雨雪判别分析中,地面气温能显著提升判别准确率,湿球温度能在一定程度上提升判别准确率,基于云顶温度、中层融化参数、低层湿球温度构建的决策树判别模型,判别准确率达到91.86%,能较好地解决临界气温下雨和雪的判别问题。  相似文献   

3.
低层温度平流对华北雨雪天气过程的降水相态影响分析   总被引:7,自引:4,他引:3  
杨舒楠  徐珺  何立富  于超 《气象》2017,43(6):665-674
利用常规地面、探空观测资料、NCEP FNL和GFS分析资料,通过对2012年11月3—4日华北地区雨雪天气过程的降水相态特征进行分析,发现涡旋外围的雨雪分界线基本与925 hPa的0℃等温线和925 hPa偏北与偏南风的流线辐合线相吻合;而涡旋中心附近的雨雪分界线则存在从涡旋西北象限向涡旋中心逆时针旋转的特征。气旋发展初期,降雪主要集中在850 hPa低涡的东北偏北象限到西北象限之间,低涡的东南象限为降雨。随着气旋强度增强,低层冷平流导致低涡西南象限温度下降,降雪落区逐渐沿气旋西侧的流场向南发展,最终呈现出气旋形状的分布特征。雨雪相态的转变取决于整个对流层低层(850~950 hPa)的温度平流状况。当900~850 hPa或者950~900 hPa出现较强暖平流时,即使其他层次存在明显冷平流,降水相态仍然可能以雨为主。低层涡旋西侧的西北冷平流是造成降雪的最重要原因,当低层气流转变为偏东风后,冷平流消失,降水相态转变为雨。  相似文献   

4.
利用1999—2014年11月至翌年3月安庆站逐日地面气象观测资料和探空资料,分析了安庆站不同降水相态的时空分布特征和雨雪转换过程中影响系统的配置及转变,选取雨雪转换、降雪和冰粒(包括冻雨)3种天气现象,研究不同降水相态与特性层温度及厚度层结的关系。结果表明:1999—2014年安庆市固态降水集中出现在11月至翌年3月;有降水相态转换的过程中,将850hPa及以下各层温度与地面温度结合对降水相态转变的识别具有更好的效果,当T_(850hPa)≥-4℃、T_(925hPa)≥-4℃、T_(1000hPa)≥-1℃、T_(地面温度)≥1℃时可以判定降水相态为降雨,各层温度继续降低将出现雨转雪,直接降雪在以上指标的基础上需要850hPa的温度降至-6℃及以下;H_(850—700hPa)和H_(1000—850hPa)厚度层结雨雪转换的临界值分别为154dagpm、129dagpm,低于此值则为雪,反之为雨;0℃层高度也可以作为降水相态转换的指标之一,当0℃层高度下降至1000hPa左右时为雨转雪;降水过程中逆温层普遍存在,各种降水类型的区别在于冰粒(冻雨)在850—700hPa之间存在一个0℃以上的暖层,而降雪需要逆温层温度小于0℃。  相似文献   

5.
江苏冬季降水相态气候分布特征及预报方法探讨   总被引:7,自引:4,他引:3       下载免费PDF全文
利用1981-2010年南京、徐州、射阳逐日探空资料和地面观测资料,在分析冬季雨日、雪日、雨夹雪日气候特点的基础上,运用厚度分析的方法进一步研究江苏冬季不同降水相态的预报指标.结果表明:厚度分析能被用来识别降水相态(雨、雪),1 000~850 hPa厚度阈值1 292 gpm可以作为江苏冬季区分雨、雪的一个重要参考指标.同时结合地面温度和850 hPa温度可以较准确的判定降水的相态,即1 000~ 850 hPa厚度≤1 292 gpm,且T850≤-3℃,T≤2℃时,判定为雪;反之,则为雨.另外,地面湿球温度在雨雪区分上也是一个很有参考价值的指标.  相似文献   

6.
一次江淮气旋复杂降水相态特征及成因分析   总被引:1,自引:0,他引:1  
刘畅  杨成芳  宋嘉佳 《气象科学》2016,36(3):411-417
本文应用常规探空资料、地面观测资料、欧洲中心细网格(0.25°×0.25°)数值预报初始场资料和NCEP/NCAR 1°×1°再分析资料分析了山东一次江淮气旋降雪过程的复杂相态特征,并初步分析了成因。结论如下:(1)山东省2014年2月16—17日的雨雪天气过程,降水相态多样性和相态转化复杂性是主要特点,表现为同一时刻雨、雪和雨夹雪三种相态共存,郯城站降水相态逆转(由雨夹雪转雨再转雪),鲁东南地区降雪同时鲁西南地区降雨的"东雪西雨"现象。(2)在系统发展不强的江淮气旋降雪过程中,鲁中山区相对高海拔地区夜间强烈的辐射降温和山脉迎风坡的动力抬升作用均会造成边界层温度的降低,后期对流层低层为东北风控制时,除鲁中山区外,其迎风坡东麓或东北麓(潍坊地区)出现固态降水可能性也较大,一般情况下,地面2 m温度为1~2℃,1 000 hPa温度为0℃左右,925 hPa温度为-3℃左右,可出现固液共存降水现象。(3)相态逆转现象的发生与江淮气旋发展阶段和气温日变化两个因素紧密相关。0℃层在925 hPa上下的状态是一种临界状态,可产生雨夹雪或雨,但0℃层高度下降不是由雨转雪的充分条件,还需考察冷平流发展情况。(4)当江淮气旋生成地偏东(位于长江口附近),且发展不强烈时,山东若受其影响产生降水,后期上游如有新系统发展,可能与气旋共同影响山东,造成复杂相态的江淮气旋降雪过程。  相似文献   

7.
本文以吉林省辽源站为代表,并选取辽源市2008-2012年降水、高空和地面实况观测资料,分析研究吉林省中部半山区降水相态(指雨或雨夹雪转雪,下同)的影响系统及温度变化特征,结果表明:500h Pa低涡槽(包括低槽)、850h Pa切变或低涡槽、地面气旋(蒙古气旋、华北气旋)等影响系统共同作用是辽源市雨雪相变天气过程的典型形势,但低层系统对降水相态的影响较高层系统更为明显。分析降水相态的温度变化特征得出雨或雨夹雪转雪时的温度阈值和预报指标为:T700≤-5℃;T850≤-1℃;T地面≤1℃。  相似文献   

8.
利用常规气象观测资料、地面自动站资料、欧洲再分析资料(ERA5 025°×025°),对2020年1月5—7日河南省强雨雪过程中雨雪相态多次转换成因进行分析。结果表明:500 hPa高空低槽、中低层切变线、西南(东南)暖湿急流与低层冷空气在强雨雪区交汇为强雨雪提供了动力、水汽条件,亦为雨雪相态转换提供了有利的温度条件。冷空气分别从东路和中路南下影响河南,导致近地层明显降温是雨转雨夹雪或雪的主要原因之一,而冷空气的强度和厚度是决定降水相态的关键因子。中层和近地面暖层厚度对降水相态至关重要。本次过程降水相态为纯雪时,冰雪层和冰水混合层厚度超过2 980 gpm,中层无暖层,近地面0 ℃线低于975 hPa;降水相态为雨夹雪时,有时无冰雪层,冰水混合层厚度超过1 400 gpm,中层有时有暖层,但整层暖层厚度在900~1 330 gpm;雨转雨夹雪发生在地面气温低于21 ℃时,雨夹雪出现在地面气温11~21 ℃时;纯雪发生在地面气温≤11 ℃时。  相似文献   

9.
山东冬半年降水相态的温度特征统计分析   总被引:11,自引:4,他引:7       下载免费PDF全文
杨成芳  姜鹏  张少林  张磊 《气象》2013,39(3):355-361
采用济南和青岛1999-2011年的降水、高空和地面观测资料,研究了山东冬半年降水相态与影响系统的关系及温度垂直变化特征,获得不同降水相态的温度预报指标.结果表明:(1)降水相态变化与影响系统有关,江淮气旋和回流形势产生的大雪以上强降雪存在雨雪转换,低槽冷锋、黄河气旋和切变线(低涡)多产生中雪以下直接降雪.(2)无相态变化的降雪过程一般发生在温度较低、垂直变化单一的条件下,850 hPa以下各层均有明显温度阈值.(3)有相态转换的降雪过程中,850和925 hPa的温度对于雨、雪、雨夹雪的识别没有明显指示性,1000 hPa以下的温度最为关键,将925 hPa以下各层与地面的温度结合起来判别相态,较使用单一特性层温度更为可靠;冰粒区别于其他降水类型,在温度场上的显著特征为700 hPa的温度较高.(4)0℃层高度可用于雨雪转换指标:降雨时0℃层高于925 hPa或在925 hPa上下,当0℃层的高度降至1000 hPa上下时转为降雪.(5)雨夹雪和冰粒发生在有雨雪相态转换的降水过程中,为过渡形态,不会单独出现.  相似文献   

10.
利用2000—2015年10月至次年4月天津地区逐日常规气象观测资料和ERA-Interim再分析资料(0.125°×0.125°),对天津地区发生的3种降水相态转换(雨转雨夹雪再转雪)的天气过程进行统计,分析降水相态转换过程中温度、湿度和不同等压面厚度特征,得到与降水相态转换关系密切的9种判别因子:850 hPa温度(T 850)、925 hPa温度(T 925)、1000 hPa温度(T 1000)、地面温度(T s)、1000~850 hPa位势厚度(H 1000-850)、850~700 hPa位势厚度(H 850-700)、0℃层高度、-4℃层高度和925 hPa相对湿度,给出每种因子对应不同降水相态的阈值,并通过3次天气个例进一步验证指标的可用性。在此基础上,综合利用9个判别因子和阈值指标建立降水相态判别方程,经检验发现雨和雪回代检验判别准确率达80%以上。  相似文献   

11.
近30a山西不同相态降水的统计特征及概念模型   总被引:3,自引:0,他引:3  
利用山西省1981~2010年108站的地面降水观测数据,以降水量≥0.1 mm的日数为指标,对山西108个县市不同相态降水的时空分布特征进行了分析,结果表明:五寨(山西西北部)和陵川(山西东南部)平均降雨日数、平均降雪日数、平均雨夹雪日数都位于全省之首;30 a间山西的降雨日数和降雪日数分别以3.333 d/10 a和1.529 d/10 a的趋势减少,而雨夹雪日数则以0.34 d/10 a的趋势增多;山西区域降雪和降雨日数变化趋势的空间分布都具有西部减少趋势高于东部的特征,雨夹雪日数变化趋势的空间分布则具有东部增多趋势高于西部增多趋势的特征;朔州和忻州西部是降雪日数减少趋势最强的区域,运城是降雨日数减少趋势最强的区域,晋城是雨夹雪日数增多趋势最强的区域。应用328个多相态降水过程资料和NCEP再分析资料进行统计分析,结果表明:冷空气侵入导致中低空温度下降,0℃层高度降低是降水相态发生变化的主要原因;-3℃和0℃是山西中南部降水相态转变时850 hPa和925 hPa的临界值;3.5℃则是山西北部和高海拔地区降水相态发生转变时850 hPa温度的临界值;西北路冷空气侵入多相态降水过程,地面冷锋是降水相态的分界线,东路冷空气侵入多相态降水过程,低空切变线则是降水相态的分界线。  相似文献   

12.
2018年1月下旬,江西省中北部出现严重雨雪冰冻灾害天气,覆冰和积雪持续时间长达7 d,其间多次出现罕见的雨雪相态转换,先后经历了雨、冻雨、雪、冻雨、雪5个复杂过程。文中对此次天气过程的相态转换特征及成因进行了分析。结果表明: 1) 在有利的环流背景下,西风带小槽发展东移并携带冷空气南下,破坏850 hPa高度层附近的暖性逆温层,是冻雨转雪的重要因素,而700 hPa高度层上西南急流的脉动、偏南风增强为雪转冻雨提供了动力和热力条件。2) 冻雨发生时最强风切变出现在925—850 hPa高度层,降雪发生时出现在850—700 hPa高度层。两次冻雨转降雪过程中,上升运动均增强,降雪时低层辐合、高层辐散强度较冻雨时强。3) 近地面气温接近05 ℃时,850 hPa高度层冷暖平流对中低层大气的降温和升温作用至关重要,冷平流的降温作用剧烈,而暖平流的升温作用需要持续输送。暖层消失,冻雨即可转降雪;雪转冻雨时850 hPa和700 hPa高度层温度升至1 ℃,暖层内最高温度达2 ℃,相态的转变落后于暖性逆温层的形成。4) 此次过程中,九江地区发生雨转冻雨以及冻雨转雪过程,地面气温下降明显。雨转冻雨时,气温≤-05 ℃;冻雨转降雪时,气温≤-1 ℃。雪转冻雨时,地面温度略有上升,仍在-1 ℃以下。高山站气温的持续上升,对雪转冻雨天气有指示意义。  相似文献   

13.
应用常规观测、风廓线雷达、多普勒雷达及NCEP再分析资料,从影响系统、水汽、热动力演变等方面对辽宁2次雨转暴雪成因及降雪量可预报性进行对比分析。结果表明:过程Ⅰ回暖时间长,锋生时间短,近地面锋区影响期间降水增强,925~850 hPa锋区垂直分布,850 hPa锋区过境后强降雪结束;过程Ⅱ短暂强回暖,冷空气楔入低层早,暖湿空气沿冷垫上滑,锋生时间长,近地面锋区影响期间无降水,中层锋区与低层东北回流叠加时出现强降雪,850 hPa锋区过境缓慢,强降雪持续时间长,700 hPa锋区过境后强降雪结束。雷达回波特征显示,0℃层亮带高度在降水相态转变为雨夹雪前明显降低,雨夹雪阶段基本维持,降雪后0℃层亮带消失。对数值预报降雪量订正,首先关注前期回暖、气温日变化与系统性降温叠加作用,再根据不同类型降雪影响系统动力、水汽辐合等条件判断降水时段,综合订正降雪量。  相似文献   

14.
利用2011—2020年辽宁地区逐小时地面观测数据和定时高空观测数据,统计分析纯雪、雨雪转换两类降水天气特征。结果表明,辽宁地区2011—2020年雨雪转换日数与纯雪日数比值为1∶5,沿海地区多于内陆,雨雪转换时主要有5种天气类型:空中槽型、北上气旋型、低涡切变型、冷平流型、回流型,其中,空中槽型雨雪转换日数最多,占总日数的42.8%;冷平流型和回流型相对较少,分别占9.4%和7.8%。地面2 m气温、0℃层高度、抬升凝结高度、抬升凝结高度气温与地面2 m气温差、700~850 hPa位势高度差、850~1000 hPa位势高度差等6个气象因子对鉴定辽宁地区降水相态有一定参考意义。利用高分辨的欧洲细网格资料对2021年2月28日雨雪天气过程的降水相态进行诊断分析,结果表明,雨雪相态的转变对对流层低层温度平流非常敏感,0℃层高度、冰雪层厚度、粒子降落行程与降水相态之间关系密切;当0℃层高度降低(由920 hPa到950 hPa),云中冰雪层增厚(由430 hPa增至530 hPa),液态水层变薄(由20 hPa到10 hPa),云中冰雪物下落到地面的行程缩短(由780 m降至410 m),下落环境温度降低(由3.5℃到0.5℃),降水相态由雨转换为雨夹雪或雪。  相似文献   

15.
丹东冬季降水相态判据研究   总被引:4,自引:0,他引:4  
利用丹东1979-2012年10月至翌年4月逐日降水、天气现象、高空探空资料及NCEP0.5°×0.5°(部分2.5°×2.5°)再分析资料,对丹东地区冬季不同相态降水气候及大气层结特征进行了统计分析, 并对不同相态降水典型个例进行了分析。结果表明:丹东地区虽地处北方,但冬季降水相态多样。在秋冬、冬春过渡和严冬不同时段,大气不同层结不同相态降水气温阈值范围不同,建立了丹东冬季不同大气层结降水相态判据。大气不同层结前期特别是近地面层气温背景与不同相态降水的发生与转换关系密切,可为动态预报降水相态提供了参考。850 hPa及以下中低空温度条件对冬季降水相态形成至关重要,850 hPa的0℃线能较好区分雨和雪区大致范围,925 hPa的0 ℃线能较好区分雨夹雪和雪以及雨夹雪和雨大致范围。  相似文献   

16.
通过对2006—2015年青岛冬半年不同相态降水的统计分析得出,青岛冬半年纯雨日数1月最少,纯雪日数2月最多,12月和1月是雨夹雪及雨雪转换日数占当月降水日数比例最高的两个月。通过个例分析表明,雨雪转换过程多与冷空气入侵相联系。温度场和风场条件能较好地反映出雨雪转换的特征,降温和风向转换在850 hPa以下层更为明显。探空资料分析表明,850 hPa、925 hPa、1 000 hPa和地面气温对不同相态降水都有很好的指示意义,越低层指示性越好。0 ℃层高度对不同相态降水同样具有指示意义,100~500 m高度是雨雪转换的关键高度层;以不同高度层气温为指标确定出青岛冬半年降水相态预报判别指标。  相似文献   

17.
董伟  杨光武  马梁臣  朱丹 《干旱气象》2019,37(3):363-369
采用2005-2014年长春市地面和高空常规气象观测资料,研究冬半年地面和高空不同高度层气温对降水相态变化的影响。结果表明:地面气温对降水相态变化影响程度最大,以1.7℃作为雨和雨夹雪的相态转换指标、以-0.1℃作为雪和雨夹雪的相态转换指标可以较好地判断降水相态;将地面气温与925 hPa温度相结合来判断降水相态更加准确;地面气温在0℃附近上升或下降的变化速度越快,雨夹雪持续时间越短。  相似文献   

18.
采用高空和地面观测资料,对山东1999—2013年24次有相态逆转降雪过程的影响系统、出现时间、逆转前后的温度变化及各类系统逆转的天气形势特征进行了统计分析。结果表明:1)低槽冷锋、江淮气旋、黄河气旋和暖切变线可在山东产生降水相态逆转,而回流形势降雪不会产生逆转。2)山东降水相态逆转发生在11月—次年4月,以12月和1月居多,12月频率最高;有明显的日变化,14时前后最容易发生逆转,而23时—次日05时最少。3)雪转雨时最显著的特征为地面2 m气温升高,升温幅度多在1~2 ℃;850 hPa以下至地面的温度至少有1~2个层次升温。4)地面2 m气温对逆转的指示性最好,降雪时在0 ℃左右,略高于通常降雪阈值,最低为-1 ℃;其次为1 000 hPa,降雪时接近于0 ℃。5)对流层低层暖平流升温或温度日变化升温导致雪转雨,温度平流弱时温度日变化起主要作用。各类天气系统的逆转范围、时段等有明显差异。因此,对于降雪阈值附近的相态预报,需综合考虑低层温度平流和日变化两个因素,重点关注地面2 m气温能否升温,午后为关键时段。  相似文献   

19.
利用综合观测资料统计分析了1999—2020年秋季31次渤海海效应降雨过程的基本特征,通过典型个例分析揭示了海效应降雨的形成机理,并与渤海海效应降雪进行了比较。结果表明:(1)秋季渤海海效应降雨发生在10月中旬至11月,以11月中上旬发生频率最高;10月为纯雨,11月可产生纯雨,也有雨转雨夹雪(雪)或雨雪共存的天气过程;海效应降雨分布在山东半岛北部沿海地区,过程降雨量均为小雨,持续时间不超过1 d。(2)海效应降雨发生时的冷空气强度比海效应降雪弱,降雨时山东半岛850 hPa的温度10月在-1 ℃左右,11月在-6 ℃左右;11月发生雨转雨夹雪或雪时,850 hPa的温度一般为-9~-8 ℃,地面气温集中在2~4 ℃之间。(3)典型较明显的渤海海效应降雨过程环流形势表现为500 hPa冷涡、850 hPa西北冷平流和地面冷高压,强冷空气入侵渤海和山东半岛,790 hPa以下北部沿海地区产生浅层对流不稳定,风向风速辐合触发不稳定能量而产生海效应降雨;强海效应降雨时段北部沿海地区对流层低层存在偏东北风与西北风之间的切变线及明显的风速辐合,最大雷达反射率因子为45~50 dBZ。(4)渤海海效应降雨的环流形势、水汽来源、热力、动力及雷达径向速度特征与海效应降雪基本相同,主要差异在于海面温度和冷空气强度。渤海海效应降雨的预报关键期为10月下旬至11月。  相似文献   

20.
利用1999—2017年石家庄国家基本气象观测站的降水实况资料,统计出暴雪天气过程,在分析其地面和高空影响系统的基础上,着重分析暴雪天气过程中温度场的变化特征。结果表明:暴雪天气过程的地面影响系统为冷高压和低压倒槽共存的形势,但高空系统存在差异;没有相态转变而以固态雪的形式出现的暴雪天气过程中,对流层中没有逆温层,整个对流层温度小于0 ℃,且700 hPa高度以下的中低空温度小于-5 ℃;有相态转变的暴雪天气过程中,925—700 hPa多存在逆温层,其存在有利于降水的维持和发展,850 hPa和925 hPa可视为特性层,850 hPa温度小于-4 ℃,925 hPa温度小于等于-2 ℃,0 ℃层的高度位于950 hPa以下,可作为预报雨或雨夹雪转雪的参考指标;地面气温大于0 ℃且小于1 ℃可视为过渡相态雨夹雪的地面气温临界值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号