首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
通过对2006—2015年青岛冬半年不同相态降水的统计分析得出,青岛冬半年纯雨日数1月最少,纯雪日数2月最多,12月和1月是雨夹雪及雨雪转换日数占当月降水日数比例最高的两个月。通过个例分析表明,雨雪转换过程多与冷空气入侵相联系。温度场和风场条件能较好地反映出雨雪转换的特征,降温和风向转换在850 hPa以下层更为明显。探空资料分析表明,850 hPa、925 hPa、1 000 hPa和地面气温对不同相态降水都有很好的指示意义,越低层指示性越好。0 ℃层高度对不同相态降水同样具有指示意义,100~500 m高度是雨雪转换的关键高度层;以不同高度层气温为指标确定出青岛冬半年降水相态预报判别指标。  相似文献   

2.
利用2008—2018年逐年11月至翌年3月常规气象观测资料,从天气形势配置、降水相态与特征层气温、0 ℃层高度和层结厚度的关系等进行分析,归纳了黄山地区冬半年雨、冻雨、雨夹雪和雪四类降水相态的判别依据,并利用一次雨雪转换天气过程对判据进行了检验。结果表明,黄山地区固态降水和固液混合型降水主要发生在1—2月。850 hPa高度层及以下各层气温对雨雪转换的判别效果较好,当850、925、1 000 hPa特征层气温和地面气温分别大于等于-3.9、-2.6、0.5、1 ℃时可判定为雨,各层气温继续降低将出现雨夹雪或雪。当0 ℃层高度在1 000 hPa高度层以上时可能出现雨,反之出现雨夹雪或雪。此外,厚度层结也能较好地区分雨和雨夹雪或雪。冻雨(冰粒)的判据与其他降水相态的判据不同之处是在700 hPa高度层附近存在融化层。判据能较好地区分黄山地区不同降水相态,但对冻雨和冰粒的识别能力相对较弱。  相似文献   

3.
利用常规气象观测资料、地面自动站资料、欧洲再分析资料(ERA5 025°×025°),对2020年1月5—7日河南省强雨雪过程中雨雪相态多次转换成因进行分析。结果表明:500 hPa高空低槽、中低层切变线、西南(东南)暖湿急流与低层冷空气在强雨雪区交汇为强雨雪提供了动力、水汽条件,亦为雨雪相态转换提供了有利的温度条件。冷空气分别从东路和中路南下影响河南,导致近地层明显降温是雨转雨夹雪或雪的主要原因之一,而冷空气的强度和厚度是决定降水相态的关键因子。中层和近地面暖层厚度对降水相态至关重要。本次过程降水相态为纯雪时,冰雪层和冰水混合层厚度超过2 980 gpm,中层无暖层,近地面0 ℃线低于975 hPa;降水相态为雨夹雪时,有时无冰雪层,冰水混合层厚度超过1 400 gpm,中层有时有暖层,但整层暖层厚度在900~1 330 gpm;雨转雨夹雪发生在地面气温低于21 ℃时,雨夹雪出现在地面气温11~21 ℃时;纯雪发生在地面气温≤11 ℃时。  相似文献   

4.
武威  胡燕平 《高原气象》2019,38(5):983-992
利用常规气象资料、NCEP 0. 25°×0. 25°分析资料以及微波辐射计、风廓线雷达等高分辨率资料,采用诊断和统计方法,对2017年2月21日沙颍河流域一次雨雪过程中降水相态进行分析。结果表明:在高空低槽与东路冷空气共同作用造成雨雪天气的背景下,925 h Pa及以下冷高压底部的偏北冷空气造成低层持续降温,导致降水相态变化。过程前期700 h Pa以下为强暖平流,冷平流在900 h Pa以下且较为浅薄,温度层结为冷层-暖层-冷层-暖层,冰晶粒子下落融化形成雨滴。降水中后期冷平流发展强烈导致温度迅速下降,整层温度变为冷层,导致相态为雪;即使下游局部地区仍有暖层,但暖层浅薄、低层冷层深厚,相态也为雪。雨雪转换时0℃层高度下降明显,降雨阶段0℃层在抬升凝结高度以上,降雪阶段0℃层降到抬升凝结高度以下; 0℃层亮带回波在相态转换时出现明显变化,其亮带高度逐渐降低。微波辐射计的温湿廓线、云底高度以及液态水等在雨雪转换中均有显著变化,液态水含量在雨雪转变时迅速增大。风廓线风场定性反映了冷空气持续南下,低层冷垫增厚,导致相态转变以及降水强度增加;风廓线速度定量反映出降雨和降雪之间的差异,降雨速度范围为1. 5~7. 0 m·s-1,降雪速度范围在0. 25~1. 5 m·s-1;雨雪转换时下落速度明显减小,可用于相态转变的监测和预报。  相似文献   

5.
一次春季强寒潮的降水相态变化分析   总被引:18,自引:2,他引:16  
应用NCEP 1°×1°资料、常规观测资料、自动站资料、多普勒天气雷达资料,对2007年3月河北省一次早春强寒潮天气背景下的降水多相态转换的成因与雨雪转换的预报进行了分析.结果表明:850hPa及以下蒙古高压和江淮气旋共同作用产生的偏东风导致低层大气温度持续下降,降水性质从雨转为雪.随着江淮气旋入海,高低空风向发生突变,从东北风转为西北风,加上太行山地形作用,使太行山东麓部分地区低层大气出现小幅升温,0℃层高度抬升,致使从雪转为雨.多普勒天气雷达回波图上,0℃层亮带高度的迅速下降,可作为从液态降水向固态降水转换的判据之一.天气学分析表明,当0℃层高度低于950hPa、地面气温在0℃上下、1000hPa温度低于2℃、925hPa温度低于-2℃时,降水性质将从雨向雨夹雪或雪转变.  相似文献   

6.
利用1999—2014年11月至翌年3月安庆站逐日地面气象观测资料和探空资料,分析了安庆站不同降水相态的时空分布特征和雨雪转换过程中影响系统的配置及转变,选取雨雪转换、降雪和冰粒(包括冻雨)3种天气现象,研究不同降水相态与特性层温度及厚度层结的关系。结果表明:1999—2014年安庆市固态降水集中出现在11月至翌年3月;有降水相态转换的过程中,将850hPa及以下各层温度与地面温度结合对降水相态转变的识别具有更好的效果,当T_(850hPa)≥-4℃、T_(925hPa)≥-4℃、T_(1000hPa)≥-1℃、T_(地面温度)≥1℃时可以判定降水相态为降雨,各层温度继续降低将出现雨转雪,直接降雪在以上指标的基础上需要850hPa的温度降至-6℃及以下;H_(850—700hPa)和H_(1000—850hPa)厚度层结雨雪转换的临界值分别为154dagpm、129dagpm,低于此值则为雪,反之为雨;0℃层高度也可以作为降水相态转换的指标之一,当0℃层高度下降至1000hPa左右时为雨转雪;降水过程中逆温层普遍存在,各种降水类型的区别在于冰粒(冻雨)在850—700hPa之间存在一个0℃以上的暖层,而降雪需要逆温层温度小于0℃。  相似文献   

7.
利用2014—2017年山西省地面和高空气象观测资料、NCEP/NCAR FNL再分析资料、山西及周边地区多普勒天气雷达资料,对山西冬半年雨转雪过程进行归类与分析,探讨地面气温在降水相态转换中的作用,提取降水相态转换的前兆信息。针对降雪过程,统计分析降雪量和积雪深度增量的关系,总结提炼积雪深度预报指标。最后,选取气候特征相似的两次雨转雪过程进行对比分析,揭示降水相态转换的物理机制。结果表明:(1)山西省11月发生雨转雪的站次最多,其次为2月。地面气温作为降水相态变化的重要指标,其与气候和天气(如冷空气强度和路径)特征、地理位置等有关。(2)山西冬半年积雪深度增量与降雪量比值约0.68 cm·mm~(-1),且比值随着气温降低而增大,因此存在明显的时空差异。(3)在雨转雪的不同时段,随着对流层低层降温,冰雪层厚度在总云层的比例有所增加,且云中固态凝结物下落路径缩短,使得固态凝结物在下落过程中融化概率减小,造成相态变化。  相似文献   

8.
利用ERA5再分析资料及云雷达、微波辐射计和SA双偏振多普勒雷达等多源观测资料,分析2020年11月17—19日张家口地区一次雨雪天气的降水相态演变特征。结果表明:在高空低槽、中低层低涡与地面倒槽配合下,高空槽后西北气流引导冷空气南下造成气温迅速下降,导致降水相态变化。过程前期整层大气均为强暖平流,且地面气温较高,降水相态为雨。18日傍晚冷平流发展强烈,各层温度迅速降低,整层变为冷层,导致降水相态转换为雪。散度和垂直速度的诊断表明降雨时段的动力强迫主要位于高层,降雪时段则主要位于低层。云雷达高分辨率资料可以反映0℃层变化,大于10 dBZ的质心变化可以指示降水强度变化,降雨时的基本速度最大可达6~8 m·s^(-1),而降雪时则小于2 m·s^(-1)。微波辐射计高分辨率时空资料可以准确判断雨雪转换时间,降水开始之前3~5 h积分水汽含量出现跃升与峰值。双偏振雷达和微波辐射计结合可以对降水粒子相态实现准确判断,可用于降水相态转换的临近预报。  相似文献   

9.
2018年1月下旬,江西省中北部出现严重雨雪冰冻灾害天气,覆冰和积雪持续时间长达7 d,其间多次出现罕见的雨雪相态转换,先后经历了雨、冻雨、雪、冻雨、雪5个复杂过程。文中对此次天气过程的相态转换特征及成因进行了分析。结果表明: 1) 在有利的环流背景下,西风带小槽发展东移并携带冷空气南下,破坏850 hPa高度层附近的暖性逆温层,是冻雨转雪的重要因素,而700 hPa高度层上西南急流的脉动、偏南风增强为雪转冻雨提供了动力和热力条件。2) 冻雨发生时最强风切变出现在925—850 hPa高度层,降雪发生时出现在850—700 hPa高度层。两次冻雨转降雪过程中,上升运动均增强,降雪时低层辐合、高层辐散强度较冻雨时强。3) 近地面气温接近05 ℃时,850 hPa高度层冷暖平流对中低层大气的降温和升温作用至关重要,冷平流的降温作用剧烈,而暖平流的升温作用需要持续输送。暖层消失,冻雨即可转降雪;雪转冻雨时850 hPa和700 hPa高度层温度升至1 ℃,暖层内最高温度达2 ℃,相态的转变落后于暖性逆温层的形成。4) 此次过程中,九江地区发生雨转冻雨以及冻雨转雪过程,地面气温下降明显。雨转冻雨时,气温≤-05 ℃;冻雨转降雪时,气温≤-1 ℃。雪转冻雨时,地面温度略有上升,仍在-1 ℃以下。高山站气温的持续上升,对雪转冻雨天气有指示意义。  相似文献   

10.
利用2000—2015年10月至次年4月天津地区逐日常规气象观测资料和ERA-Interim再分析资料(0.125°×0.125°),对天津地区发生的3种降水相态转换(雨转雨夹雪再转雪)的天气过程进行统计,分析降水相态转换过程中温度、湿度和不同等压面厚度特征,得到与降水相态转换关系密切的9种判别因子:850 hPa温度(T 850)、925 hPa温度(T 925)、1000 hPa温度(T 1000)、地面温度(T s)、1000~850 hPa位势厚度(H 1000-850)、850~700 hPa位势厚度(H 850-700)、0℃层高度、-4℃层高度和925 hPa相对湿度,给出每种因子对应不同降水相态的阈值,并通过3次天气个例进一步验证指标的可用性。在此基础上,综合利用9个判别因子和阈值指标建立降水相态判别方程,经检验发现雨和雪回代检验判别准确率达80%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号