首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文设计了一种恢复夏季大气环流场的EOF(经验正交函数)迭代方案,并利用1951~1984年中国夏季降水距平场和北半球500hPa夏季高度距平场作镢复试验,数值试验效果较好.此项工作表明:利用某些长时间序列的资料通过EOF迭代方案恢复历史时期大气环流是可行的.  相似文献   

2.
改进的奇异值分解(advanced singular value decomposition,ASVD)方法,是对经过空间均匀化订正的格、站点网资料的奇异值分解(singular value decomposition,SVD)方法.根据奇异向量与经验正交函数(empirical orthogonal function,EOF)的关系,给出了格、站点网资料SVD方法中均匀化订正的方法,进而得到了改进的奇异值分解(ASVD)方法.将ASVD方法、SVD方法用于中国60a(1951-2010年)160站冬季气温、降水同期相关系数矩阵C的分析,结果表明:ASVD方法的前4个主要模态的模方拟合率和累积模方拟合率均明显高于SVD方法;ASVD方法前两个奇异向量典型场图上高绝对值区与C模方图上高值区的关系明显较SVD方法合理.由此论证了SVD方法中资料均匀化订正的必要性,验证了实际分析中ASVD方法的效果.  相似文献   

3.
站网均匀化订正对中国夏季气温EOF分析的改进   总被引:1,自引:0,他引:1  
本文对中国160站站网上1960~2010年夏季(6~8月)气温距平场序列进行了站网均匀化订正,对订正前、后的气温距平场序列作了EOF分析.结果表明:(1)订正后的前3个典型场高绝对值区均衡分布在三北(东北、华北、西北)地区、青藏高原和长江中下游地区,与夏季气温均方差场高值区位置基本一致;订正前的前3个特征向量高绝对值...  相似文献   

4.
许可  严小冬 《贵州气象》2005,29(Z1):12-14
利用经验正交函数(EOF)对印度洋海表温度距平(SSTA)进行展开,分析印度洋海温场的时空特征及其与贵州夏季降水的关系.结果表明,同期的印度洋海表温度距平分布场与贵州夏季降水相关显著,西印度洋索马里海区的SSTA与贵州夏季降水关系最为密切,当夏季索马里海区海温偏高(低)时贵州夏季降水偏少(多).  相似文献   

5.
基于经验正交函数(EOF)和奇异值分解(SVD)方法,作者对IAP9L-AGCM后报的东亚季风区1984~2003年共20年的跨季度夏季降水距平场进行回归订正,并对订正前后降水距平场与实测场间的空间相似性、强度、以及年际变化相关性进行分析.结果表明这两种订正方案均能明显提高夏季降水距平预报场与实测场间的空间相似性和年际变化相关性;而基于EOF的订正方案对强度的订正效果要优于基于SVD的订正方案.此外,在此基础上,我们进一步提出多种订正方法集合的思想.  相似文献   

6.
基于新疆北部区域(简称北疆)37个代表气象站1961—2019年逐月平均气温资料和NCEP/NCAR再分析环流资料,通过经验正交函数(EOF)分解和相关分析方法,研究北疆近58 a冬季气温季节内变化的时空演变特征及其对应的大气环流特征。结果表明:(1)北疆前冬和后冬气温EOF分解的前两个模态在空间上均表现为全区一致变化型和偏西偏北地区与中东部反相变化型。前冬和后冬气温全区一致型的时间系数与同期500 hPa位势高度场呈显著负相关关系区域位于乌拉尔山附近,气温反相变化型的时间系数与同期500 hPa位势高度场呈显著正相关关系区域位于波罗的海附近。(2)北疆冬季气温季节内主要有前后距平一致和前后距平相反两种特征。在北疆冬季气温前后距平相反年份",前冷后暖"时的500 hPa乌拉尔山高压脊减弱消失,欧洲槽东移加深,东亚大槽强度减弱";前暖后冷"时,500 hPa欧洲槽减弱西退,乌拉尔山地区高度场抬升,东亚大槽加深。(3)前冬偏冷时,后冬偏暖的主要原因来自于500 hPa极涡增强,欧洲槽加深;前冬偏暖时,后冬偏冷的大部分原因是受500 hPa欧亚大陆大片的负变高区影响。  相似文献   

7.
经验正交函数展开精度的稳定性研究   总被引:7,自引:3,他引:7  
张邦林  丑纪范 《气象学报》1992,50(3):342-345
在文献[1]中,我们已从理论和数值模拟两个方面研究了用经验正交函数作基函数缩减气候数值模式自由度的可行性与有效性。用理论模型作数值试验的结果是令人满意的,应用于实际气候数值模拟,一个还需考虑的关键问题是大气外强迫等各种因子变化允许的范围内,对实际资料作EOF展开的稳定性问题。本文分别用1951—1984年500 hPa月平均高度距平场资料,1966—1975年500 hPa候平均高度距平场资料,1965—1978年夏季500 hPa逐日高度距平场资料作EOF展开,并提出了经验正交函数展开精度稳定性的判断方法,旨在证明实际资料EOF展开在大气外强迫等各种因子变化的允许范围内是稳定的,以便为我们用实际资料的经验正交函数作基函数建立一个合理的简化动力模型提供坚实的资料基础。  相似文献   

8.
宋正山  杨辉 《大气科学》2001,25(3):401-410
利用NCEP/NCAR1980~1997年夏季月平均风场及同时期我国160个测站月平均降水资料,讨论了运用向量经验正交展开(EOF)方法得到的流场月距平主要模态的时空变化特征。分析了主要模态与中国夏季降水(雨型)的相关分布,指出EOFl及EOF2模态与中国夏季降水最主要分布型式有很好的对应关系。用小波变换方法对主要模态的时间系数进行了分析,揭示了各模态的多时间尺度性质,发现3~6年周期振荡是主要的。  相似文献   

9.
印度洋海温异常对印度季风、高原夏季降水的影响   总被引:9,自引:3,他引:6  
假拉  周顺武 《高原气象》2003,22(Z1):132-137
利用经验正交函数(EOF)对印度洋海表面温度距平(SSTA)进行分解,分析了印度洋海温场的时空分布特征,并通过合成分析、奇异值(SVD)分解等方法,结果表明,前期和同期的印度洋海表温度距平分布场与夏季高原降水相关显著,西印度洋-非洲东海岸赤道地区的SSTA与高原夏季降水联系最密切;当春、夏季印度洋西部海温出现明显负(正)距平时,当年印度夏季风偏强(弱),高原夏季降水普遍偏多(少).  相似文献   

10.
假拉  周顺武 《高原气象》2003,22(10):132-137
利用经验正交函数(EOF)对印度洋海表面温度距平(SSTA)进行分解,分析了印度洋海温场的时空分布特征,并通过合成分析、奇异值(SVD)分解等方法,结果表明,前期和同期的印度洋海表温度距平分布场与夏季高原降水相关显,西印度洋-非洲东海岸赤道地区的SSTA与高原夏季降水联系最密切;当春、夏季印度洋西部海温出现明显负(正)距平时,当年印度夏季风偏强(弱),高原夏季降水普遍偏多(少)。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

13.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

14.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

15.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

16.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

17.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

18.
正ERRATUM to: Atmospheric and Oceanic Science Letters, 4(2011), 124-130 On page 126 of the printed edition (Issue 2, Volume 4), Fig. 2 was a wrong figure because the contact author made mistake giving the wrong one. The corrected edition has been updated on our website. The editorial office is sincerely sorry for any  相似文献   

19.
20.
Index to Vol.31     
正AN Junling;see LI Ying et al.;(5),1221—1232AN Junling;see QU Yu et al.;(4),787-800AN Junling;see WANG Feng et al.;(6),1331-1342Ania POLOMSKA-HARLICK;see Jieshun ZHU et al.;(4),743-754Baek-Min KIM;see Seong-Joong KIM et al.;(4),863-878BAI Tao;see LI Gang et al.;(1),66-84BAO Qing;see YANG Jing et al.;(5),1147—1156BEI Naifang;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号