首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
国内外气象学者的研究指出,中层气旋是低纬地区的一种重要扰动,是发生在对流层中层的重要天气系统之一,其本质属于热带或副热带扰动.在对生成于阿拉伯海和南海的中层气旋的研究中,发现它们常常给影响区带来剧烈天气、产生大量降水.本文根据中央气象台绘制的1976—1986年4—9月的历史天气图,分析了生成于10—30°N,100—130°E区域内的中层气旋的气候特征,以便进一步研究它们对地处低纬、位于华南西部的广西天气的影响。  相似文献   

2.
《气象科技》1976,(8):9-14
一、前言中层气旋是发生在对流层中层的低纬度天气系统之一。在我国南海及其附近地区,夏半年经常有中层气旋活动,而且往往带来大范围的降水、雷暴等天气,对华南地区造成严重影响。因此,对中层气旋的研究,不仅是热带天气系统研究的一个重要课题,而且对我国社会主义革命和建设也有着重要的意义。  相似文献   

3.
副热带气旋是低纬度高空低涡的一种形式。据有关文献记载:“副热带气旋是发生在副热带(25—35N°)地区的一种气旋。它既非锋面性质的温带气旋,又不是暖中心性质的热带台风,而是在对流层中最强大的冷中心性质的中层气旋。这种副热带气旋在冬半年1—3月初的太平洋中部和大西洋中部最多”。而在夏季发生在我国大陆上,并且形成暴雨天气的个例较为罕见。现将1989年7月底、8月初一次副热带气旋过程总结如下。  相似文献   

4.
热带气旋影响下江苏强对流天气指数分析   总被引:1,自引:0,他引:1  
利用10年资料(2001—2010年)对热带气旋影响下的江苏地区强对流天气的发生规律进行统计,发现在各类强对流天气中,短时强降水天气发生频率最高,其次是雷雨大风天气,一般雷暴很少发生,龙卷和冰雹天气从未发生。统计结果还表明,在这10年中共有21个热带气旋影响江苏地区,多数热带气旋处于向热带低压减弱的阶段。通过对相关个例进行强对流指数研究发现,这些指数的阈值比以往的研究要小,表明受热带气旋影响更容易造成对流不稳定和低层不稳定能量堆积,最终导致强对流天气发生。   相似文献   

5.
梅雨锋上气旋发展的反演诊断   总被引:1,自引:0,他引:1  
本文采用位涡反演诊断模式,对梅雨锋上气旋的发生,发展机制进行分析研究,利用扰动位涡,反演出气旋发生,发展阶段的扰动位热场,扰动流函数,结果表明,梅雨锋气旋发展阶段,500hPa以上的高层槽脊系统对中低层气旋的发展没有直接贡献,850hPa以下的低层系统(低层锋区),能够反演出气旋及其周围系统的发展,但强度较弱,气旋区,中层位涡扰动与总位涡扰动所反演的结果的基本一致,即中层系统对梅雨锋气旋的发展起到主要作用,气旋发生阶段,850hPa 以下的低层系统对中低层气旋的加强起主要作用。  相似文献   

6.
研究热带气旋影响下广东省深圳地区的闪电特征及规律。利用2012—2019年西北太平洋热带气旋历史数据,筛选出2012—2019年距离深圳市国家气象基本站1 000 km内的热带气旋,按热带气旋强度等级进行分组。并利用同时期深圳地区闪电、温度观测数据,研究不同等级热带气旋在不同距离、方位角情况下,深圳地区的闪电特征。发现热带气旋影响下深圳地区闪电年际差异很大,一年中7月和8月深圳地区闪电活动最活跃。热带气旋对深圳地区闪电活动影响大的距离大多为400 km以外,即深圳处于热带气旋的外围雨带。总体上在台风季,TD、TS、STS较易引发深圳地区的闪电,尤其是当TS位于福建地区,距离深圳400~600 km时,极易给深圳地区带来闪电影响。研究结果可为深圳地区的防台减灾工作提供科技参考。   相似文献   

7.
夏季江淮气旋的结构   总被引:3,自引:0,他引:3  
徐夏囡  焦佩金 《大气科学》1984,8(2):189-196
本文用1980年6月23—25日和8月23—25日的常规观测资料,分析两次江淮气旋的运动场和热力场的平均结构.分析中使用了活动坐标网格,对风、温度、湿度和降水等气象要素进行合成.研究指出,这类气旋的波长为2000—2500公里,水平闭合环流的尺度为100—1500公里,垂直伸展高度达7—8公里左右,气旋轴线随高度显著地向北倾斜.气旋性环流和气旋性涡度在对流层中层的700毫巴附近最强.锋区在对流层上部明显,在对流层低层反而较弱;在气旋中心附近及其北侧,在700毫巴附近及以下仅有一狭窄的冷带.强降雨区出现在低  相似文献   

8.
1960—2003年我国热带气旋降水的时空分布特征   总被引:11,自引:0,他引:11       下载免费PDF全文
利用1960—2003年登陆影响我国的热带气旋及其造成的降水资料, 对44年间登陆我国热带气旋降水时空变化特征进行统计分析。结果表明:热带气旋降水与热带气旋登陆活动相一致, 主要发生在5—11月, 其中7—9月为盛期; 热带气旋降水量以及热带气旋暴雨日数的分布是自南向北、从沿海到内陆迅速减小, 最大出现在海南和华南、东南沿海地区; 热带气旋强度越强其最大过程降水一般也就越大, 但是两者并非严格的线性关系; 1960年以来, 我国受热带气旋影响的绝大部分地区热带气旋降水呈波动下降的趋势。  相似文献   

9.
利用高分辨率观测资料和ERA5再分析资料, 分析造成2021年11月7—8日东北极端暴雪的温带气旋结构特征及爆发性发展机制, 结果表明:温带气旋发生在高空冷涡背景下, 地面气旋在黄海形成后出现爆发性快速增强并沿东北地区东部北上。地面降雪区主要分布在气旋西侧, 且降雪强度与气旋的发生发展密切相关;地面气旋在爆发性发展后由叶状云系演变为逗点涡旋云系, 并表现出明显的锋面断裂和暖锋包卷;其垂直结构也先后出现高空锋区断裂、干暖核形成和中性锢囚锋区加强;西伯利亚高压脊、华北高空槽和东北高压脊3个异常中心构成Rossby波列, 随着高度异常中心不断东移及波能量向下游地区频散, 华北高空槽区的波作用通量明显增大导致华北冷涡快速增强, 涡度因子的急剧增大有利于地面气旋爆发性发展;随着平流层位涡高值区沿等熵面不断向南发展和向下传播, 导致中层冷涡快速发展并向下伸展, 诱发地面气旋爆发性增强。  相似文献   

10.
蔡秀华  陈辉  曹鸿兴  吕文忠 《气象》2009,35(12):83-87
核电站因它不排放如二氧化碳这样的温室气体,核电对降低能源部门的碳密集作出了贡献,因此愈益受到人们的重视.在对核电站地区的天气、气候环境进行分析的基础上,对影响靖宇核电站地区的温带气旋作了研究.结果表明:1949-2007年期间影响靖宇地区的温带气旋计111个;受温带气旋影响的年数有41年(约2/3).影响靖宇地区且产生强降雨的温带气旋,主要发生在6、7、8月这3个月,并且一半以上出现在7月.影响靖宇地区的温带气旋大部分是东北气旋,占总数的65%;蒙古气旋与华北气旋次之.此外,对造成严重影响的温带气旋的个例也从天气学角度进行了分析.  相似文献   

11.
东亚温带低气压路径   总被引:4,自引:0,他引:4  
王荣华 《气象学报》1963,33(1):15-24
本文利用1951—1960年的亚洲地面天气图,分月統計东亚地区(70°E以东,55°N以南)每2.5°×2.5°經緯格內低压中心通过的頻数,繪制了頻数分布图,确定出低压移动的主要路径,此外,还繪制了冬半年和夏半年低压发生(初現)頻数分布图、頻数百分率的随緯度分布和沿120°E与110°E經线上低压中心通过頻数的各月綜合图。結果得出:1.东亚大陆中緯度西风带的低压主要出現在蒙古人民共和国中部到我国的东北地区,20°N以南不出現溫带低气压;2.45°N以南的我国大陆上低压很弱,大多数不閉合,只有在我国东部或入海后才发展;3.日本东南面海上是低压路径的集中带;4.春季低压出現最为頻繁,秋季次之,夏季我国江淮流域低压有所增多。 最后,对低压路径进行了分类,把东亚的溫带低气压划为五大类和十一亚类,并对各类低压分别作了簡要的叙述。  相似文献   

12.
亚洲热带夏季风的首发地区和机理研究   总被引:28,自引:5,他引:28  
文中分析了多年逐候平均 85 0hPa风场和黑体辐射温度等物理量的时空演变 ,结果表明 ,90°E以东的孟加拉湾、中南半岛和南海是亚洲热带夏季风首先爆发的地区 ,爆发时间在 2 7~ 2 8候 ,具有突发性和同时性。 90°E以西的印度半岛和阿拉伯海是热带夏季风爆发较晚的地区 ,季风首先在该区 10°N以南爆发 ,时间约在 30~ 31候 ,然后向北推进 ,6月末在全区建立 ,爆发过程具有渐进性。机制分析表明 ,由于 110~ 12 0°E的中高纬东亚大陆在春季和初夏地面感热通量、温度和气压的迅速变化 ,使热带低压带首先在该处冲破高压带 ,生成大陆低压 ,并引导西南气流在 90°E以东地区首先建立。在 90°E以西的印度半岛地区 ,地面感热通量在 4~ 5月间几乎没有明显变化 ,因而印度季风比南海季风晚爆发约 1个月。由此得出 ,90°E是东亚夏季风和南亚夏季风的分界线。此外 ,还着重探讨了南亚高压的季节变化与亚洲热带夏季风爆发的时间联系。发现南亚高压中心位置与亚洲热带夏季风爆发时间有较好的对应关系。南亚高压中心跳过 2 0°N时 ,南海夏季风爆发 ,跳过 2 5°N时 ,印度夏季风在其南部爆发。将用上述方法确定的爆发时间与用其他方法确定的爆发时间相比较 ,发现它们在南海地区有较好的一致性 ,在印度地区略有差异。  相似文献   

13.
从气象卫星资料揭示的青藏高原夏季对流云系的日变化   总被引:14,自引:2,他引:12  
文中利用日本静止气象卫星观测的1981~1994年1天8次的TBB观测值和1978~1994年NOAA卫星观测的1天2次OLR观测值研究了青藏高原地区夏季对流云系季节变化以及对流云的日变化及其东西向移动规律,并对1994年的资料进行了个例分析。结果表明,青藏高原夏季对流云有极为明显的日变化,以00~05SUTC为最弱,15~17UTC最强。在季风雨爆发后的7月中旬到8月上旬在高原中部(30~32°N,90°E)、东部(30°N,97°E)和西部(30°N,85~87°E)有3个TBB低值中心,多年月平均对流中心区云顶高度可达9.6km,而旬对流中心个别地区平均可达13km。对流云区开始发展于东部地区,随后对流云中心逐步向西移动,并于7月中下旬达到最西,此时西部地区从多年平均而言可以有短暂的强对流发展。  相似文献   

14.
Based on the NCEP/NCAR reanalysis data and the observed precipitation data in the south of China from 1958 to 2000,the impact of 30 to 60 day oscillation of atmospheric heat sources on the drought and flood events in June in the south of China is discussed.During the flood(drought) events,there exists an anomalous low-frequency anticyclone(cyclone) at the low level of the troposphere over the South China Sea and the northwestern Pacific,accompanied with anomalous low-frequency heat sinks(heat sources),while there exists an anomalous low-frequency cyclone(anticyclone) with anomalous heat sources(sinks) over the area from the south of China to the south of Japan.On average,the phase evolution of the low-frequency in drought events is 7 to 11 days ahead of that in flood events in May to June in the south of China.In flood events,low-frequency heat sources and cyclones are propagated northward from the southern South China Sea,northwestward from the warm pool of the western Pacific and westward from the northwestern Pacific around 140°E,which have very important impact on the abundant rainfall in June in the south of China.However,in drought events,the northward propagations of the low-frequency heat sources and cyclones from the South China Sea and its vicinity are rather late compared with those in flood events,and there is no obvious westward propagation of the heat sources from the northwestern Pacific.The timing of the low-frequency heat source propagation has remarkable impact on the June rainfall in the south of China.  相似文献   

15.
6月西太平洋副高脊线的年际变化及其对华南降水的影响   总被引:23,自引:11,他引:23  
用1951-1991年6月份500hPa位势高度资料取得了西太平洋副热带高压脊线位置资料序列,分析了脊线位置的变化。分析结果发现副高脊线位置与500hPa位势高度场、海面温度等关系密切。脊线位置具有显著的32年、5.3年、3.2年和2.3年振荡周期。6月份副高脊线偏北(南)华南降水偏少(多)。  相似文献   

16.
本文对南海至西太平洋一带夏季低空越赤道气流的情况和西南季风的来源,进行了初步研究。发现:(1)就气候平均而言,东非低空急流的影响范围,包括印度南部、孟加拉湾南部直到中南半岛南部和南海南部。在这一范围内,夏季月平均西南季风强度的年际变化十分一致;(2)夏季在中南半岛南部、南海南部,西南季风的主要来源是上游印度、孟加拉湾地区,直接来自南半球的气流比重不大。而热带西北太平洋的西南季风,则主要来自南半球;(3)在110-140°E 的赤道地区,并不存在一支主要的越赤道气流;(4)在150°E 附近的新几内亚东岸,有一条越赤道气流的通道。热带西北太平洋的西南季风,主要就是这支越赤道气流转向而成(但似乎要求这支气流的南风分量强度超过某一下限,即存在一阈值,才能对西北太平洋的西南季风变化有影响)。新几内亚岛上的山脉,对南半球东南信风的阻挡,是形成这支越赤道气流的重要原因之一;(5)大致在15°N 以南的南亚至西北太平洋地区,其西南季风主要由二支气流构成:一支在非洲东岸附近越过赤道,成为东非低空急流,经印度南部,往下游一直影响到南海南部;另一支在新几内亚东岸附近越过赤道,转向成西南气流影响西北太平洋。  相似文献   

17.
刘匡南  邬鸿勋 《气象学报》1956,27(3):219-242
本文根据1951—1955年五年高空和地面的资料,对夏季过程进行了分析,得到下面几点结果: 1.在东亚地区的四个主要经度带上以65°,120°和140°经度带的500毫巴强西风中心的位置和强度变化,对东亚自然天气季节的划分是最良好的指标。东经65°经度带上南边低纬度强西风的消失是梅雨期开始前的征兆。东经140°经度带上强西风在北纬40°以南消失时是夏季开始的征兆。和它相关联的过程是东亚高空大槽的消失和太平洋副热带高压带北移至30°—40°纬度带间,这个期间平均是在7月13日左右,也是江南梅雨结束的时候。故梅雨是夏季以前的盛行过程,它和500毫巴强西风区或锋区是有密切的联系的。 2.东经140°经度带上500毫巴强西风在北纬30°—40°重现时,是夏季结束秋季开始的征兆,和它相关连的天气过程是在该经度带上高空大槽重新建立,地面大陆冷高压从新地岛东部向东南下达华北地区。这个时间平均是在9月5日左右。故东亚夏季的长度平均仅55日。 3.从500毫巴强西风在各经度带上出现的情况来看,一般是西部比东部消失得早,出现得迟,不如冬季那样先在上游首先建立,在春夏之交这种相反的演变,似非地形的分支可以解释的。 4.在夏季自然天气季节所出现的盛行天气过程主要是表现在太平洋副热带高压随上游气压场的不同,及其和  相似文献   

18.
影响我国热带气旋活动的气候特征及其与太平洋海温的关系   总被引:23,自引:14,他引:23  
利用1956~2000年的热带气旋(简称TC,下同)资料对影响我国TC活动的气候特征进行了初步的统计分析,结果发现影响我国的TC活动具有明显的阶段性特征,1960年代影响我国的TC数明显偏少,而后进入偏多期,1990年代又相对偏少。影响我国的TC强度多集中于980~999 hPa,华东的闽、浙一带TC登陆比华南晚,但强度较大。在此基础上通过对影响我国的TC年个数与太平洋海温场进行相关分析,发现两个相关较密切的区域: 西太平洋暖池(120~150 E, 10~20 N)正相关区、赤道中东太平洋(180 ~90 W, 10 S~5 N)负相关区,这两个相关区具有较好的持续性。进一步分析影响我国的TC在El Ni駉年与La Ni馻年的气候特征发现,El Ni駉年影响我国的TC数较少,但强度较大,La Ni馻年则相反,影响我国TC多年和少年对应的太平洋海温距平分布形势分别与La Nia年和El Nio年的海温距平分布形势类似。  相似文献   

19.
By use of daily OLR data of eight years (1975—1977,1979—1983),the propagation features of 30—60day low-frequency oscillation (LFO) and its teleconnections are studied.The results are as follows:(1)The LFO is quite active in the regions of the South China Sea,mainland of China and subtrop-ical western-North-Pacific.(2)The zonal propagation direction of LFO is eastward along the equator and gradually changes towestward north of 10°N and south of 10°S.The westward propagation of LFO dominates in the areaof 15°N-30°N,Eastern Hemisphere.(3)In the region of east Asia (120°E),the main meridional directions are northward in tropics andsouthward in high latitudes.These two opposite propagating LFO are merged in the vicinity of subtropics.Sometimes,the northward propagating LFO can penetrate through the subtropics to high latitudes and viceversa.On the average,the northward propagation dominates in summer time.(4)The EOF analysis of the summer data shows that there are two main eiginvector centers of OLR-LFO,one is located over the Bay of Bengal and the other over the tropical western-North-Pacific.Thesign of these two centers are just opposite to each other.It should be noted that on the normal,thesetwo oscillation centers mentioned above coincide with the two strong centers of atmospheric 12eat source insummer.It means that the activities of LFO in the Indian monsoon system and the East Asian monsoonsystem are reverse.For the first component of eiginvector,a belt of LFO with the same sign stretcheswith a SW-NE direction from the tropical center in the western-North-Pacific northwestward,passing bythe point at 15°N,180°E and reaches southwestern states of the United States.To the north and southof this belt,there are other two belts with opposite sign.Again further north and south of them,there areother two belts with the same sign as the first one.Furthermore,to the NW (near Taiwan) and SE (10°S,160°W) of the tropical East Asian center,there is,respectively,another center with opposite sign.Analmost straight line can go through all three centers.The main characteristics of the second,third andfourth components of eiginvector are the same as that of the first one.It indicates that the teleconnectioncentered around the tropical East Asian center of LFO is characterized by a SW-NE oriented wave frontand the energy transport of oscillation from SE to NW.That is to say,the oscillations in the tropicalwestern-North-Pacific may be the source of those in China during summer.We call this teleconnection pat-tern the WPC (western Pacific-China) pattern so as to distinguish from the PNA pattern.  相似文献   

20.
现阶段使用的热带气旋潜在生成指数(Genesis Potential Index,GPI)在气候场的空间分布上能很好地拟合热带气旋的生成情况,但在热带气旋的年际变化拟合上效果很差。本研究考虑了相对涡度在热带气旋年际变化拟合上的重要作用,并以此为出发点,尝试改善GPI在西北太平洋地区的拟合效果。基于对1979—2011年美国联合飓风警报中心提供的热带气旋最佳路径数据和NCEP/NCAR再分析资料数据集的研究,将之前GPI中的绝对涡度项替换为修正过的相对涡度项。科氏力项仍然保留;将南海(100°~120°E,5°~25°N)与西北太平洋地区(120°~180°E,5°~40°N)热带气旋生成的差异性也纳入了考量,并在这两个区域分别构建GPI公式,改善了对热带气旋生成的气候分布模拟。除此之外,较之已存的GPI指数,改进后的GPI还很大程度提高了GPI对热带气旋生成年际变化的拟合效果,特别是对弱热带气旋年际变化的拟合效果有了显著提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号