首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
ACE-FTS(加拿大"大气化学实验"的傅里叶变换光谱仪)和Aura-MLS(美国Aura卫星的微波临边探测器)卫星CO观测资料的分析结果显示,南北半球极区大气平流层中部,于当地冬末春初季节存在明显的CO浓度垂直分布次峰值现象。应用观测密度较大、范围覆盖较广的Aura-MLS卫星资料,通过对冬春季节极区CO浓度的季节内变化进行分析后发现,冬季来自大气中间层富含CO的空气能够逐渐下沉并进入到平流层中部,在冬末春初时节,平流层上部的CO浓度快速下降,而平流层中部的CO浓度变化则较慢,从而使大气平流层中CO浓度呈现悬球状的空间分布结构,卫星观测廓线资料分析结果则呈现出次峰值现象。相应的同化气象数据MERRA的风场资料和Aura-MLS卫星观测OH资料分析结果表明,垂直输送的减弱、水平交换的加强和OH浓度的回升可能是导致平流层上部CO浓度快速减少的原因,而在平流层中部极低的OH浓度以及极弱的水平交换使CO保持较长的化学寿命,并使这一现象得以从晚冬维持到春季。  相似文献   

2.
利用东亚清洁背景站近地面臭氧观测资料,结合风场和降水资料,分析东亚各地区臭氧的多年季节变化特征,并探讨东亚太平洋地区臭氧的季节和年际变化与季风的关系以及影响近地层臭氧的主要因子。结果表明:东亚大部分地区与北半球背景站观测一致,近地层臭氧季节变化表现为春季最高、夏季最低的特征;但在东亚中纬度33~43°N,臭氧表现为夏季最高,而在东亚20°N以南地区臭氧则表现为冬末、春初最高。东亚太平洋沿岸近地面臭氧的季节变化主要受东亚冬、夏季风环流的季节变化控制。该地区不同纬度上春季峰值出现时间的差异与亚洲大陆春季不同时期污染物输送路径的差异有关。对东亚太平洋沿岸对流层顶附近位势涡度、高空急流和垂直环流季节变化的分析表明,冬春季可能是平流层向对流层输送的最强期,对近地面臭氧贡献最大。初夏至秋季(5-11月),平流层向对流层输送较弱,对近地面臭氧贡献较小。东亚太平洋地区夏季风爆发的时间和强度以及季风环流型的年际差异是导致该地区春、夏季臭氧年际变化的主要原因;而季风降水和云带位置以及平流层一对流层交换是造成臭氧年际变化的其他原因。  相似文献   

3.
首先利用臭氧探空资料验证了Aura-MLS卫星反演臭氧产品在青藏高原地区的可信度, 然后基于2005年和2006年夏季的数据产品确定了亚洲季风区夏季对流层向平流层的输送通道。结果表明, 青藏高原及其周边区域上对流层-下平流层(UT/LS)中, 一氧化碳(CO)和臭氧(O3)浓度散点分布大体上呈现出典型的“L”型分布, 夏季季节内变化反相关特征表现最明显的高度位于150 hPa附近。从时间变化上看, 7月份相关系数最大, 说明该月份对流层-平流层物质交换最为强烈。100 hPa高度位于对流层顶高度以上, 具有对流层特性的大气主要分布在青藏高原东南侧、 孟加拉湾、 印度半岛、 阿拉伯海以及阿拉伯半岛等区域上空, 说明该区域可能是亚洲季风区夏季对流层向平流层物质输送的一个主要通道。  相似文献   

4.
利用国产GPSO3臭氧探空系统观测的大气臭氧探空资料和NCEP再分析资料,结合对天气形势、大气环流背景、高空位涡变化及对流层顶高度扰动的分析,深入研究了2008年冬季北京地区10~14 km高度范围内持续出现的臭氧次峰值及大气臭氧含量异常现象。结果表明:在2008年我国南方雪灾这一特殊时期,引起臭氧垂直分布持续出现次峰值现象及臭氧含量异常的主要原因是平流层空气强烈下沉运动及其与对流层的交换作用,而引起这种下沉运动及平流层-对流层交换则是由于该阶段特殊的天气背景,乌拉尔阻塞高压长时间维持,贝加尔湖到巴尔喀什湖一带横槽稳定存在,里海以东切断低压长期维持,造成冷空气长时间、稳定地南下影响北京上空臭氧的垂直分布。加之副热带急流的出现,北京正处于其入口区左侧,其上空有强烈的辐合下沉运动,有利于平流层空气向下输送。此次臭氧次峰值及臭氧含量异常的现象很好地说明,在冷空气天气过程的影响下,北京地区上空的平流层空气运动及其与对流层的交换十分活跃。  相似文献   

5.
王春晓  田文寿 《大气科学》2017,41(2):275-288
利用2005~2014年10年的卫星微波临边探测仪(MLS)资料分析了热带平流层一氧化碳(CO)体积混合比的年际变率,发现热带平流层CO浓度的准两年振荡(QBO)在30 hPa高度附近存在明显的位相变化特征。大气化学气候模式模拟结果表明,热带平流层CO的准两年振荡信号是化学和动力过程共同作用的结果,而动力作用主要是QBO引起的次级经向环流引起的物质传输。化学和动力过程共同作用导致热带平流层CO浓度的垂直梯度在30 hPa高度处发生反转,进而产生一氧化碳QBO信号的位相变化。此外,化学气候模式模拟结果还表明,与CO有关的化学过程不但可以减弱一氧化碳QBO信号的振幅,还可以在热带30~10 hPa高度范围内造成一氧化碳QBO和纬向风QBO信号之间约3个月的时间差。  相似文献   

6.
采用阿克达拉大气本底站2012年1月1日—2017年12月31日1 min观测1次的CO资料,统计分析CO质量浓度在日内、日际、月际、季节和年际时间尺度下的变化特征,结果表明:阿克达拉日内、日际、月际、季节与年际时间尺度下的CO质量浓度变化波动均较为剧烈;年平均CO质量浓度在6年内整体呈逐年减小趋势;季节变化呈现冬季大、其他季节小的特征,各季节CO平均质量浓度从大到小排序为后冬、前冬、春季、秋季、夏季;月平均CO质量浓度呈“U”型变化特征,峰值在1月、谷值在6月, 6—9月在底部波动变化;日平均CO质量浓度变化大致呈“U”型,峰值在1月17日、谷值在6月18日;CO质量浓度四季日变化特征均为单谷型,每天14时之前波动不大,15时后迅速减小,17时达到谷值,之后又迅速增大,19时后相对平稳,四季日CO质量浓度逐时平均从大到小排序为后冬、前冬、春季、夏季与秋季。  相似文献   

7.
郑彬  施春华 《高原气象》2009,28(1):91-97
分析了1992-2000年各季节卤素掩星试验(Halogen Oceultation Experiment)HAOLE的CH4混合比资料,并用美国国家大气研究中心(the National Center for Atmospheric Research)NCAR的平流层二维模式(Simulation of Chemistry,Radiation,and Transport of Environmentally important Species)SOCARTES研究了CH4在冬、夏季节变率与平流层行星波对CH4浓度输送之间的关系,结果表明:观测和模拟的CH4混合比季节变化都很明显,而模拟的CH4浓度季节变率比观测值小30%~60%.分析结果还表明,模式中行星波引起的CH4浓度变化主要贡献于30 km以下的季节变率.比较了模拟和观测的行星波对CH4的输送结果,结果显示模式明显低估了行星波的输送,这也是模式中季节变率比观测偏小的一个主要原因.  相似文献   

8.
利用NCEP再分析资料和卫星观测资料,结合耦合了沙尘模块的中尺度模式WRF,通过个例分析研究了青藏高原及附近地区沙尘气溶胶从近地面向对流层上部和平流层下部传输的特征和机制以及青藏高原大地形对平流层与对流层之间物质交换的影响。结果表明,深对流活动可将近地面沙尘气溶胶传输到上对流层—下平流层区域,但是下平流层区域的沙尘气溶胶浓度分布依赖于地面沙尘源的位置和对流的强度,且与对流系统内是否有降水有关。在没有穿透性对流情况下,垂直上升运动不能直接将沙尘输送到下平流层,但上对流层的沙尘可通过扩散作用和小尺度的混合过程经过数小时缓慢地进入下平流层。在没有明显系统性降水的情况下,夏季青藏高原上空旺盛的对流活动和高地形使得高原上空成为气溶胶进入下平流层的主要区域。上对流层区域的沙尘气溶胶浓度还受到平流层空气入侵的影响,在没有强的地面沙尘排放源的情况下,平流层空气的入侵对上对流层区域气溶胶浓度的分布和演变有较大的影响。  相似文献   

9.
利用NCEP再分析资料和卫星观测资料,结合耦合了沙尘模块的中尺度模式WRF,通过个例分析研究了青藏高原及附近地区沙尘气溶胶从近地面向对流层上部和平流层下部传输的特征和机制以及青藏高原大地形对平流层与对流层之间物质交换的影响。结果表明,深对流活动可将近地面沙尘气溶胶传输到上对流层—下平流层区域,但是下平流层区域的沙尘气溶胶浓度分布依赖于地面沙尘源的位置和对流的强度,且与对流系统内是否有降水有关。在没有穿透性对流情况下,垂直上升运动不能直接将沙尘输送到下平流层,但上对流层的沙尘可通过扩散作用和小尺度的混合过程经过数小时缓慢地进入下平流层。在没有明显系统性降水的情况下,夏季青藏高原上空旺盛的对流活动和高地形使得高原上空成为气溶胶进入下平流层的主要区域。上对流层区域的沙尘气溶胶浓度还受到平流层空气入侵的影响,在没有强的地面沙尘排放源的情况下,平流层空气的入侵对上对流层区域气溶胶浓度的分布和演变有较大的影响。  相似文献   

10.
采用UARS卫星1993—2004年卤素掩星试验的观测资料(HALOE),分析了青藏高原(下称高原)上空大气中H2O和CH4的分布和季节变化,也与同纬度其它地区作对比,找出它们的差异,并分析了H2O和CH4的多年变化趋势。结果表明:高原上空H2O混合比在对流层上层随高度迅速减少,在对流层顶和平流层底达到极小值,平流层里水汽混合比随高度增加。高原上空CH4混合比从140 hPa直至1 hPa随高度递减。在对流层上部和平流层下部H2O和CH4混合比季节差异最明显。高原上空H2O和CH4混合比与同纬度带其它地区相比有不少差异,这种差异在对流层上部和平流层下部更明显。分析还表明:高原上空对流层上部和平流层下部H2O和CH4的分布明显受到高原热力作用引起的垂直运动的影响,高原区域是平流层和对流层交换的活跃区。平流层中上层H2O和CH4的关系很密切,其原因主要是在平流层中上层CH4很容易被氧化成H2O。趋势分析表明,在对流层顶附近,水汽在1993—2004年呈下降趋势,而CH4在1998年以前和2001年以后也呈下降趋势;平流层中层1993—2000年H2O混合比呈增加趋势,CH4呈下降趋势,2000—2004年H2O混合比呈下降趋势,而CH4呈增加趋势。  相似文献   

11.
The present study for the first time reports the global gravity wave activity in terms of their potential energy derived from TIMED/SABER observations right from the stratosphere to the mesosphere lower thermosphere (MLT) region. The potential energy profiles obtained from SABER temperature are validated by comparing them with ground based LIDAR observations over a low latitude site, Gadanki (13.5° N, 79.2° E). The stratospheric and mesospheric global maps of gravity wave energy showed pronounced maxima over high and polar latitudes of the winter hemisphere. The interannual variability of the stratospheric gravity wave activity exhibited prominent annual oscillation over mid-latitudes. The equatorial gravity wave activity exhibited quasi-biennial oscillation in the lower stratosphere and semi-annual oscillation in the upper stratosphere. The MLT region maps revealed summer hemispheric maxima over polar latitudes and secondary maxima over the equatorial region. The results are discussed in the light of present understanding of global gravity wave observations. The significance of the present study lies in emphasizing the importance of satellite measurements in elucidating gravity waves, which is envisaged to have profound impact on parameterizing these waves.  相似文献   

12.
The climate and natural variability of the large-scale stratospheric circulation simulated by a newly developed general circulation model are evaluated against available global observations. The simulation consisted of a 30-year annual cycle integration performed with a comprehensive model of the troposphere and stratosphere. The observations consisted of a 15-year dataset from global operational analyses of the troposphere and stratosphere. The model evaluation concentrates on the simulation of the evolution of the extratropical stratospheric circulation in both hemispheres. The December–February climatology of the observed zonal mean winter circulation is found to be reasonably well captured by the model, although in the Northern Hemisphere upper stratosphere the simulated westerly winds are systematically stronger and a cold bias is apparent in the polar stratosphere. This Northern Hemisphere stratospheric cold bias virtually disappears during spring (March–May), consistent with a realistic simulation of the spring weakening of the mean westerly winds in the model. A considerable amount of monthly interannual variability is also found in the simulation in the Northern Hemisphere in late winter and early spring. The simulated interannual variability is predominantly caused by polar warmings of the stratosphere, in agreement with observations. The breakdown of the Northern Hemisphere stratospheric polar vortex appears therefore to occur in a realistic way in the model. However, in early winter the model severely underestimates the interannual variability, especially in the upper troposphere. The Southern Hemisphere winter (June–August) zonal mean temperature is systematically colder in the model, and the simulated winds are somewhat too strong in the upper stratosphere. Contrary to the results for the Northern Hemisphere spring, this model cold bias worsens during the Southern Hemisphere spring (September–November). Significant discrepancies between the model results and the observations are therefore found during the breakdown of the Southern Hemisphere polar vortex. For instance, the simulated Southern Hemisphere stratosphere westerly jet continuously decreases in intensity more or less in situ from June to November, while the observed stratospheric jet moves downward and poleward.This paper was presented at the Third International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 4–8 Sept. 1995 under the auspice of the Max Planck Institute for Meteorology, Hamburg. Editor for these papers is L. Dümenil.  相似文献   

13.
基于WACCM+DART的临近空间SABER和MLS臭氧观测同化试验研究   总被引:1,自引:0,他引:1  
本研究在WACCM+DART(Whole Atmosphere Community Climate Model,Data Assimilation Research Test-Bed)临近空间资料同化预报系统中加入SABER(Sounding of the Atmosphere using Broadband Emission Radiometry)和MLS(Microwave Limb Sounder)臭氧观测同化接口,并以2016年2月一次平流层爆发性增温(SSW)过程为模拟个例进行了SABER和MLS臭氧观测同化试验,得出以下结论:同化SABER和MLS臭氧体积浓度观测得出的WACCM+DART臭氧分析场能够较真实反映SSW期间北极上空平流层臭氧廓线随时间的演变特征,且与ERA5(Fifth Generation of ECMWF Reanalyses)再分析资料描述的臭氧变化特征具有很好的一致性;基于SABER和MLS臭氧观测的WACCM臭氧6 h预报检验表明同化臭氧观测对臭氧分析和预报误差的改善效果主要体现在南半球高纬平流层和北半球中高纬平流层中上层-中间层底部;基于ERA5再分析资料的WACCM+DART分析场检验表明同化SABER和MLS臭氧体积浓度资料可在提高北半球高纬地区上平流层-中间层底部臭氧场分析质量的同时减小该地区上平流层-中间层底部温度场和中间层底部纬向风场的分析误差;基于MLS臭氧资料的臭氧中期预报检验表明相对控制试验同化SABER和MLS臭氧体积浓度资料能更好改善0~5 d下平流层和中间层底部臭氧的预报效果。  相似文献   

14.
Ozone mixing ratios observed by the Bordeaux microwave radiometer between 1995 and 2002 in an altitude range 25–75 km show diurnal variations in the mesosphere and seasonal variations in terms of annual and semi-annual oscillations (SAO) in the stratosphere and in the mesosphere. The observations with 10–15 km altitude resolution are presented and compared to photochemical and transport model results.Diurnal ozone variations are analyzed by averaging the years 1995–1997 for four representative months and six altitude levels. The photochemical models show a good agreement with the observations for altitudes higher than 50 km. Seasonal ozone variations mainly appear as an annual cycle in the middle and upper stratosphere and a semi-annual cycle in the mesosphere with amplitude and phase depending on altitude. Higher resolution (2 km) HALOE (halogen occultation experiment) ozone observations show a phase reversal of the SAO between 44 and 64 km. In HALOE data, a tendancy for an opposite water vapour cycle can be identified in the altitude range 40–60 km.Generally, the relative variations at all altitudes are well explained by the transport model (up to 54 km) and the photochemical models. Only a newly developed photochemical model (1-D) with improved time-dependent treatment of water vapour profiles and solar flux manages to reproduce fairly well the absolute values.  相似文献   

15.
The stratospheric polar vortex strengthening from late winter to spring plays a crucial role in polar ozone depletion. The Arctic polar vortex reaches its peak intensity in mid-winter, whereas the Antarctic vortex usually strengthens in early spring. As a result, the strong ozone depletion is observed every year over the Antarctic, while over the Arctic short-term ozone loss occasionally occurs in late winter or early spring. However, the cause of such a difference in the life cycles of the Arctic and Antarctic polar vortices is still not completely clear. Based on the ERA-Interim reanalysis data, we show a high agreement between the seasonal variations of temperature in the subtropical lower stratosphere and zonal wind in the subpolar and polar lower stratosphere in the Southern Hemisphere. Thus, the spring strengthening of the Antarctic polar vortex can occur due to the seasonal temperature increase in the subtropical lower stratosphere in this period.  相似文献   

16.
Owing to the importance of middle atmosphere, recently, a Middle Atmospheric Dynamics (MIDAS) program was carried out during the period 2002?C2007 at Thumba (8.5°N, 77°E). The measurements under this program, involving regular radiosonde/rocket flights as well as atmospheric radars, provided long period observations of winds and temperature in the middle atmospheric region from which waves and oscillations as well as their forcing mechanisms particularly in the low-latitude middle atmosphere could be analyzed. However, a detailed analysis of the forcing mechanisms remains incomplete due to the lack of important measurements like ozone which is a significant contributor to atmospheric dynamics. Presently, profiles of ozone are available from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broad Emission Radiometry) satellite globally from about 15 to 100?km, over multiple years since 2002. In this regard, a comprehensive study has been carried out on ozone and its variability at Quasi Biennial Oscillation (QBO) and Semiannual Oscillation (SAO) scales using TIMED/SABER ozone observations during the MIDAS campaign period. Before using the TIMED/SABER ozone measurements, an inter-comparison has been carried out with in situ measurements of ozone obtained under the Southern Hemisphere Additional Ozonesondes (SHADOZ) campaign for the year 2007 at few stations. The inter-comparison showed very good agreement between SABER and ozonesonde derived ozone profiles. After validating the SABER observations, ozone profiles are used extensively to study the QBO and SAO along with temperature and winds in the 20?C100?km height region. It is known that the SAO in mesosphere and stratosphere are in opposite phases, but the present study for the first time reports the aspect of opposite phases in the mesosphere itself. Thus, the present work attempts to study the long-period oscillations in stratosphere and mesosphere in ozone, temperature and winds simultaneously for the first time over this latitude. These observations provided a unique opportunity to explore long-period oscillations in chemistry, dynamics and thermal structure of the middle atmosphere simultaneously.  相似文献   

17.
Abstract

To evaluate future climate change in the middle atmosphere and the chemistry–climate interaction of stratospheric ozone, we performed a long-term simulation from 1960 to 2050 with boundary conditions from the Intergovernmental Panel on Climate Change A1B greenhouse gas scenario and the World Meteorological Organization Ab halogen scenario using the chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). In addition to this standard simulation we performed five sensitivity simulations from 2000 to 2050 using the rerun files of the simulation mentioned above. For these sensitivity simulations we used the same model setup as in the standard simulation but changed the boundary conditions for carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone-depleting substances (ODS). In the first sensitivity simulation we fixed the mixing ratios of CO2, CH4, and N2O in the boundary conditions to the amounts for 2000. In each of the four other sensitivity simulations we fixed the boundary conditions of only one of CO2, CH4, N2O, or ODS to the year 2000.

In our model simulations the future evolution of greenhouse gases leads to significant cooling in the stratosphere and mesosphere. Increasing CO2 mixing ratios make the largest contributions to this radiative cooling, followed by increasing stratospheric CH4, which also forms additional H2O in the upper stratosphere and mesosphere. Increasing N2O mixing ratios makes the smallest contributions to the cooling. The simulated ozone recovery leads to warming of the middle atmosphere.

In the EMAC model the future development of ozone is influenced by several factors. 1) Cooler temperatures lead to an increase in ozone in the upper stratosphere. The strongest contribution to this ozone production is cooling due to increasing CO2 mixing ratios, followed by increasing CH4. 2) Decreasing ODS mixing ratios lead to ozone recovery, but the contribution to the total ozone increase in the upper stratosphere is only slightly higher than the contribution of the cooling by greenhouse gases. In the polar lower stratosphere a decrease in ODS is mainly responsible for ozone recovery. 3) Higher NOx and HOx mixing ratios due to increased N2O and CH4 lead to intensified ozone destruction, primarily in the middle and upper stratosphere, from additional NOx; in the mesosphere the intensified ozone destruction is caused by additional HOx. In comparison to the increase in ozone due to decreasing ODS, ozone destruction caused by increased NOx is of similar importance in some regions, especially in the middle stratosphere. 4) In the stratosphere the enhancement of the Brewer-Dobson circulation leads to a change in ozone transport. In the polar stratosphere increased downwelling leads to additional ozone in the future, especially at high northern latitudes. The dynamical impact on ozone development is higher at some altitudes in the polar stratosphere than the ozone increase due to cooler temperatures. In the tropical lower stratosphere increased residual vertical upward transport leads to a decrease in ozone.  相似文献   

18.
2019-2020冬季北极平流层极涡异常并且持续的偏强,偏冷.利用NCEP再数据和OMI臭氧数据,本文分析了此次强极涡事件中平流层极涡的动力场演变及其对地面暖冬天气和臭氧低值的影响.此次强极涡的形成是由于上传行星波不活跃.持续的强极涡使得2020年春季的最后增温出现时间偏晚.平流层正NAM指数向下传播到地面,与地面AO指数和NAO指数相一致,欧亚大陆和北美地面气温均比气候态偏暖,在欧亚大陆的一些地区,2020年1月和2月的气温甚至偏高了 10K.2020年2月以来北极臭氧出现了2004年以来的最低值,2020年3-4月60°-90°N的平均臭氧柱总量比气候态偏低了 80DU.  相似文献   

19.
根据1980—2000年ERA-Interim再分析的风场和温度场资料,计算12月与1—2月北半球行星波的EP通量及其散度,并按冬季不同月份分析了平流层整层温度和风场从20世纪80年代到90年代变化的特征及其与行星波活动变化的关系。结果表明,12月高纬度地区中低平流层呈增温趋势;而1—2月温度变化呈冷却趋势。在12月中高纬度中上平流层纬向风明显减速;而在1—2月高纬度中高平流层,随着纬度和高度的增加,纬向风呈明显加速趋势。冬季北半球行星波主要沿低纬度和极地波导两支波导向上传播。但是,12月行星波沿低纬度波导的传播减弱,沿极地波导向平流层整层的传播则明显增强。而1—2月行星波沿低纬度波导的传播明显增强,沿极地波导向平流层的传播则减弱。因此,北半球极区平流层1980—2000年间12月与1—2月波流相互作用的年代际变化形势趋于相反,有必要针对冬季不同月份分开进行讨论。  相似文献   

20.
采用1979—2005年美国大气海洋局(NOAA)的卫星观测资料和IPCC第5次全球气候变化比较试验(CMIP5)的模式资料,对全球对流层和平流层近26 a的气温趋势进行了研究。结果表明,CMIP5模拟的全球平均大气温度趋势与观测结果较一致,能够再现平流层冷却和对流层增温等特点,但是在气温趋势的经纬度分布上,模式资料与观测资料间存在较大差异,同时模式间也存在明显的不一致。与观测资料相比,CMIP5模式资料低估了平流层在热带地区的降温速率,而且明显高估了对流层中部到平流层下层的南极区域的降温趋势。不同CMIP5模式间的最大标准方差出现在平流层的南北极区域,但是在对流层所有纬度上标准方差都保持着较小值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号