首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nocturnal measurements of air temperature, relative humidity, temperatureinversion-layer thickness, water vapour path and visibility-through-fog, madeunder non-foggy and foggy conditions in winter over two seasons at Delhi,are analysed to study the decrease in both rate of cooling and temperature inversion-layer thickness during the course of nights followed by fog occurrence.In particular, the decrease in the rate of cooling, compared to that on non-foggynights, is explained as due to the greenhouse warming effect by a layer of excessive,near-saturated water vapour trapped in a temperature inversion. Next, the linearprogramming technique is employed to forecast the occurrence of fog, where thevisibility-through-fog is minimized through its linear regression equation with thepair of variables, mean air temperature and temperature decrease over one hour(measuring rate of cooling at two convenient hours) in the pre-midnight period.This technique provides feasible solutions that enables one to forecast the occurrenceof radiative fog.  相似文献   

2.
The size and variation of the urban increase of atmospheric downward radiation have been observed in the Tokyo area. Downward radiation flux, air temperature and humidity were observed by automobile traverses along the expressways across the greater Tokyo area from the Kanagawa (southwest) to the Chiba (east) sides. The observations were carried out on clear and rather calm nights in the winters of 1975–1978. The results show that Tokyo receives increased downward radiation in comparison with the amount received in the surrounding rural areas. The area of increased downward flux extends about 40 km at its widest along the observation route when the winds are weak, and the rural-urban increase of downward radiation becomes about 8% on the Kanagawa side and about 10% on the Chiba side. The area of increased downward flux is close to that of the urban heat island, where an urban decrease of water vapour content is also observed. The present analysis shows that the large urban increase of radiation flux is due to the difference between the vertical temperature profiles over the urban and rural regions. The development of a surface temperature inversion over the rural area and the urban decrease in water vapour content provide a rather smaller rural-urban difference in downward radiation compared with the development of a heat island.  相似文献   

3.
The size and variation of the urban increase of atmospheric downward radiation have been observed in the Tokyo area. Downward radiation flux, air temperature and humidity were observed by automobile traverses along the expressways across the greater Tokyo area from the Kanagawa (southwest) to the Chiba (east) sides. The observations were carried out on clear and rather calm nights in the winters of 1975–1978. The results show that Tokyo receives increased downward radiation in comparison with the amount received in the surrounding rural areas. The area of increased downward flux extends about 40 km at its widest along the observation route when the winds are weak, and the rural-urban increase of downward radiation becomes about 8% on the Kanagawa side and about 10% on the Chiba side. The area of increased downward flux is close to that of the urban heat island, where an urban decrease of water vapour content is also observed. The present analysis shows that the large urban increase of radiation flux is due to the difference between the vertical temperature profiles over the urban and rural regions. The development of a surface temperature inversion over the rural area and the urban decrease in water vapour content provide a rather smaller rural-urban difference in downward radiation compared with the development of a heat island.  相似文献   

4.
The formation mechanism of a cold sea-fog case observed over the Yellow Sea near the western coastal area of the Korean Peninsula is investigated using numerical simulation with a one-dimensional turbulence model coupled with a three-dimensional regional model. The simulation was carried out using both Eulerian and Lagrangian approaches; both approaches produced sea fog in a manner consistent with observation. For the selected cold sea-fog case, the model results suggested the following: as warm and moist air flows over a cold sea surface, the lower part of the air column is modified by the turbulent exchange of heat and moisture and the diurnal variation in radiation. The modified boundary-layer structure represents a typical stable thermally internal boundary layer. Within the stable thermally internal boundary layer, the air temperature is decreased by radiative cooling and turbulent heat exchange but the moisture loss due to the downward vapour flux in the lowest part of the air column is compensated by moisture advection and therefore the dewpoint temperature does not decrease as rapidly as does the air temperature. Eventually water vapour saturation is achieved and the cold sea fog forms in the thermal internal boundary layer.  相似文献   

5.
雾对城市边界层和城市环境的影响   总被引:38,自引:3,他引:38  
根据1999年11、12月及2001年2月北京市几次雾过程的大气边界层探测资料,再配合大范围气象资料,分析了北京城市雾发生过程中的大气环流形势,对比研究了出现水雾和霾时不同的边界层结构特征,结合环境污染监测资料,分析了雾对城市大气环境的影响.结果表明,在雾的发生发展过程中,边界层的温度层结由雾前的逆温层转变为雾区内的近中性层结,雾的微物理结构变化也表现出对污染物的沉降作用明显减弱,造成在雾发生时,城市空气污染相对严重.同时,该文初步探讨了这种变化的物理机制.  相似文献   

6.
在北京城市气象环境的数值模拟中,人为热的设置是一个难点。人为热包括感热和潜热,人为潜热可以通过计算人为水汽排放获得。本文利用飞机观测资料对北京冬季人为水汽排放进行了定量估算。研究发现,在北京城区下风方向观测到相对周边区域更高的水汽摩尔分数,当观测到城市水汽过量信号时,水汽排放率的估计值在58~9539 kg/s,占城市大气边界层水汽总平流(背景+城市过量)的0.64%到13.12%。城市过量水汽排放的主要来源是天然气燃烧、水冷空调系统、城市交通等人为水汽的排放,中心城区和周边区域融雪率和蒸发率的差异可能也会有一定的贡献,但所占比例较小。  相似文献   

7.
山东中西部一次持续性大雾的形成及维持机制   总被引:2,自引:0,他引:2  
吕博  贾斌  韩风军  徐娟  王健 《干旱气象》2014,(5):830-836
利用常规气象观测资料和NCEP/NCAR提供的6 h再分析资料(分辨率为1°×1°),对2013年1月12-16日发生在山东中西部地区的一次持续性大雾天气过程从环流背景、层结条件、动力和热力学机制等方面进行了诊断分析。结果表明:中高层偏西气流、对流层低层温度脊和地面冷高压的稳定维持为这次持续性大雾过程提供了有利的环流背景;大雾过程经历了辐射雾—平流辐射雾—平流雾的复杂演变阶段,不同阶段的大雾湿层厚度及逆温强度有所不同;适当的风速和低层弱的水汽辐合有利于大雾稳定维持和发展;近地层辐合上升、中高层辐散下沉,易在界面形成逆温层,有利于大雾的出现,而整层的辐合上升运动往往容易形成中高云,不利于近地层水汽的聚集,难以形成大雾。  相似文献   

8.
长江中上游平原地区冬季雾观测分析   总被引:4,自引:3,他引:1  
费冬冬  牛生杰 《气象科学》2017,37(3):376-384
长江中上游年平均雾日数达到20~106 d,是我国主要雾区之一。利用2010年12月在江汉平原观测获得的边界层廓线和雾滴谱资料,重点分析了该地区冬季雾过程的边界层结构及其生消过程。结果表明:荆州冬季雾多出现在寒潮过境1~2 d后,多为平流辐射雾;雾顶发展是水汽在上层逆温下积累,并伴随200~300 m高度冷平流降温引起;近地层冷平流降温导致饱和水汽压减小,同时上层系统性下沉增温引起逆温增强,水汽积累促使强浓雾过程产生;低空急流促使外界偏干气流与雾体混合后雾滴蒸发,是该地区雾顶迅速下降的主要原因;平均数浓度为150~406个·cm-3,极大值达到1 983个·cm-3,平均液水含量为0.014~0.118 g·m-3,极值达到0.786 g·m-3,与南京和重庆强浓雾观测值相似,超过其他地区观测值。城市地区高气溶胶浓度,配合充足的水汽条件,使得荆州雾过程微物理参量数值较大,易出现能见度小于50 m,持续时间4~9 h的强浓雾过程。  相似文献   

9.
雨雾、雪雾共生天气气象要素分析   总被引:3,自引:0,他引:3  
利用多通道微波辐射计、边界层风廓线仪及自动/人工气象站等观测资料, 分析了2007年秋冬季北京地区雨雾和雪雾两次共生天气形成与维持过程中地面和高空气象要素伴随降雨、 降雪过程的变化。结果显示:(1) 高湿和小风是雨雾、雪雾生成并造成地面低能见度的主要气象条件。大雾形成与维持过程中, 地面水平能见度与相对湿度的反相关关系非常显著。能见度越低时, 雾的含水量也越高。 (2) 较弱的降雨和降雪可以促使雾含水量减少, 提高能见度, 但降雨或降雪蒸发增湿又利于雾的维持。 (3) 雨雾在降雨过程中高层气温经历大幅增降, 除可能受天气系统影响外, 与云层中水汽凝结释放的大量潜热和含水量大幅度增加也有关系。雪雾在降雪过程中高层温度总体随着时间趋于降低且变化幅度较小。 (4) 在降雨、降雪过程中雨雾和雪雾低层一直存在水汽饱和层, 且饱和层的顶部随降雨和降雪强度的加大而抬升, 厚度不断加大, 造成地面水平能见度进一步下降。结合催化剂人工消雾与共生雾降水 (降雨或降雪) 相似的原理, 个例分析结果初步表明较弱的降雨或降雪过程对消除暖雾、冷雾的影响有限, 对改善地面水平能见度并不显著, 这对人工消雾技术研究具有一定的启发作用。  相似文献   

10.
Using the composite field observational data collected in the area south of the Nanling Mts. and numerical modeling, the seasonal features of dense fog and visibility, fog drop spectrum and physical concept of fog forming have been analyzed. The occurring frequency of low visibility(≤200 m) is very high with a mean of 24.7%, a maximum of 41.8% from the end of autumn to winter and next spring. The fog processes that occur in the area south of the Nanling Mts. in spring and winter result from the interactions of complicated micro-physical processes, the local terrain, water vapor transportation and the influencing weather system. The fog processes are arisen from advection or windward slope, which is much different from the radiation fog. Cooling condensation due to the air lifted by the local mountain plays an important role in fog formation. Windward slope of the mountain is favorable to the fog formation. Dense fog can occur at lower altitudes in the windward slope of mountain, resulting in the lower visibility. The fog is mainly of small-drop spectrum with smaller number-density than that of urban fog, and its drop spectrum has descending trend in the section of smaller diameter. The inverse relationship between fog water content and visibility is the best among several relationships of micro-variables. In addition to micro-physical processes of fog body itself, the motion of irregular climbing and crossing over hillside while the fog body is being transported by the wind are also important reasons for the fluctuation of micro-physical parameters such as fog water content.  相似文献   

11.
MP-3000A 是一种新型大气探测仪器,可以连续得到从地面到10 km 高度上高分辨率的位温、相对湿度、水汽密度及其廓线。选取大雾发生、维持及消散时微波辐射计观测数据,分析发现,大雾从形成到消散过程中水汽密度、相对湿度和位温均有不同变化;大雾发生前近地层大气中的相对湿度、水气密度一般会稳定增加,大雾发生时两者会有爆发性增加的现象。大雾维持阶段在近地层多伴有逆温层,辐射雾逆温层明显;大雾期间雾层高度有稳定型也有波动型,雾层高度下降时大雾会迅速加强。大雾消散时近地层大湿区减小抬升,水汽密度迅速减小。因此研究微波辐射计探测的大气水汽密度、液态水含量和位温,将有助于提高大雾生成与消散的预报、预警。  相似文献   

12.
We evaluate the statistical properties of low-level jets (LLJs) observed by means of a network of Doppler sodars in the Moscow region, Russia. Continuous long-term measurements of the echo-signal intensity and wind-velocity profiles were carried out in July 2005 and in 2008–2010 synchronously in the centre of Moscow and at a rural site. The summertime nocturnal LLJs have a very clear diurnal cycle and exhibit features predicted by the Blackadar mechanism. In contrast, the long-lasting wintertime jets do not have any clear diurnal variability. The urban environment strongly influences LLJs in both seasons: above the city LLJs are higher, weaker and observed more rarely than at the rural site. In very cold periods (air temperature below −8°C) no LLJs were observed over the city, instead convection emerged in the urban boundary layer. The results are based on observations made in July 2005, January and December 2009, and January 2011.  相似文献   

13.
南京市最高温度场的数值模拟   总被引:2,自引:0,他引:2  
  相似文献   

14.
气溶胶粒子对城市雾影响的模拟研究   总被引:12,自引:7,他引:5  
在三维雾模式内增加气溶胶粒子的长波辐射效应,旨在运用模拟的方法研究夜间城市气溶胶粒子对雾的形成和发展的影响.运用重庆市的地形及有关资料,模拟了重庆市冬季雾的形成和发展过程,并与不考虑气溶胶粒子情况下雾的形成和发展过程进行了对比分析.结果表明:气溶胶粒子的存在,由于其温度效应,使地面雾形成时间推迟,低层雾含水量普遍减小;适量的气溶胶粒子有助于重庆雾向高处发展;当气溶胶粒子成倍增加后,对雾的形成和发展均有阻碍作用.  相似文献   

15.
大连地区大雾特征   总被引:8,自引:1,他引:7       下载免费PDF全文
选取2007年2月和4月出现在大连及其沿海地区的两次大雾过程, 采用GTS1型数字式探空仪探测资料、常规观测资料和NCEP/NCAR再分析资料, 对其环境场、热力和动力作用等进行诊断分析。结果表明:大雾期间, 中高纬度地区高空纬向暖干气流和对流层中下层西南暖湿气流, 为大雾形成提供了有利的水汽和风场条件。低层大气稳定层结的建立及暖干空气与雾层的上下叠置, 有利于大雾的维持。黄渤海的海温作用使冬季地面冷高压进一步增温变性, 有利于辐射雾形成发展, 使春季的暖气团冷却凝结, 有利于平流冷却雾的生成维持。伴有冷平流东移南下的偏北风是促使持续大雾消散的动力因子。  相似文献   

16.
This study demonstrates that thermal satellite images combined with ‘in situ’ ground data can be used to examine models of heat island genesis and thus identify the main causes of urban heat islands (UHIs). The models, although proposed over 30 years ago, have not been thoroughly evaluated due to a combination of inadequate ground data and the low resolution of thermal satellite data. Also there has been limited understanding of the relevance of satellite-derived surface temperatures to local and regional scale air temperatures. A cloud-free ASTER thermal image of urban and rural areas of Hong Kong was obtained on a winter night with a well-developed heat island, accompanied by a 148 km vehicle traverse of air temperatures. Over the whole traverse a high R2 of 0.80 was observed between surface and air temperatures, with the two datasets showing a similar amplitude and general trend, but with the surface exhibiting much higher local variability than air temperature. Gradients in both surface and air temperature could be related to differences in land cover, with little evidence of large scale advection, thus supporting the population/physical structure model of UHI causation, rather than the advection model. However, the much higher surface and air temperatures observed over the largest urban area, Kowloon, than over any smaller urban centre with similar physical structure in the New Territories, would seem more indicative of the advection model. The image and ground data suggest that Kowloon's urban canopy layer climate is mainly influenced by local city structure, but it is also modified by a strongly developed, regional scale urban boundary layer which has developed over the largest urban centre of Kowloon, and reinforces heating from both above and below.  相似文献   

17.
重庆市区冬季雾的宏微观结构及其物理成因   总被引:9,自引:2,他引:9  
  相似文献   

18.
Simulation of a Summer Urban Breeze Over Paris   总被引:4,自引:0,他引:4  
Numerical simulations for an anticyclonic summer episode in the Paris area have been performed at the meso- scale for a 48-hour period, and compared to observations from a dense operational observational network. The meteorological stations have been classified, according to the extent of urbanization of their surroundings, into four classes (central Paris, urban, suburban, and rural). The atmospheric model, coupled with an urban surface scheme, correctly reproduces the temperature (within 1 K from the observations) and humidity. The intense urban heat island during the night is also well represented.Following the validation, the model is used to quantify atmospheric effects of Paris on the boundary layer, through a comparison with a purely rural simulation. At night, the model simulates a neutral or even slightly unstable boundary layer to a depth of 200 m over the city. In contrast, a very stable layer formed in the countryside. During the day, the boundary layer was more turbulent and 500 m deeper over Paris; vertical velocities of up to 1 m s-1 were created over the city. This leads to an urban breeze with convergence at low levels (with winds around 5 to 7 m s-1), and divergence at the boundary-layer top (with similar wind speeds). The horizontal extent of the breeze reaches for more than 50 km from the city centre, and could have an important impact on pollutant diffusion in the area for calm days.Finally, three other spring cases are presented briefly. These show that an urban breeze develops if the synoptic wind is weak enough or disorganized; an urban plume develops otherwise.  相似文献   

19.
A numerical model for the computation of the wind field,air temperature and humidity in the atmospheric boundary layer (ABL) including the urbancanopy was developed for urban climate simulation. The governing equations of the modelare derived by applying ensemble and spatial averages to the Navier–Stokes equation, continuityequation and equations for heat and water vapour transfer in the air. With the spatial averagingprocedure, effects of buildings and other urban structures in the urban canopy can be accounted for byintroducing an effective volume function, defined as the ratio between the volume of air in acomputational mesh over the total volume of the mesh. The improved k - model accounts for the anisotropyof the turbulence field under density stratification. In the improved k - model, the transportof momentum and heat in the vertical direction under density stratification is evaluated based onthe assumption of a near-equilibrium shear flow where transport effects on the stresses andheat fluxes are negligible. The heating processes at surfaces of buildings and ground are alsomodelled. The comparison of the computational results obtained with the present modeland existing observational data and numerical models shows that the present model is capableof predicting the structure of turbulence in the urban canopy layer under density stratification.Numerical experiments with the new model show that the flow behaviour of the air in the urbancanopy layer is strongly affected by the existence of buildings and density stratification.  相似文献   

20.
Atmospheric surface layer (ASL) experiments over the past 10 years demonstrate that the flux-variance similarity functions for water vapour are consistently larger in magnitude than their temperature counterpart. In addition, latent heat flux calculations using the flux-variance method do not compare as favorably to eddy- correlation measurements when compared to their sensible heat counterpart. These two findings, in concert with measured heat to water vapour transport efficiencies in excess of unity, are commonly used as evidence of dissimilarity between heat and water vapour transport in the unstable atmospheric surface layer. In this note, it is demonstrated that even if near equality in flux-profile similarity functions for heat and water vapour is satisfied, the flux-variance similarity functions for water vapour are larger in magnitude than temperature for a planar, homogeneous, unstably-stratified turbulent boundary-layer flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号