首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 338 毫秒
1.
南京冬季一次雾过程宏微观结构的突变特征及成因分析   总被引:18,自引:3,他引:15  
陆春松  牛生杰  杨军 《大气科学》2010,34(4):681-690
2006年冬, 利用系留气球探测系统、雾滴谱仪、能见度仪等仪器在南京北郊进行了雾的综合观测。本文选取2006年12月14日的一次浓雾过程, 利用边界层廓线、雾滴谱、能见度以及NCEP再分析资料, 深入研究雾顶和地面雾浓度的突变特征 (爆发性增强和迅速减弱过程) 及其成因。结果表明: 雾顶的爆发性发展是湍流促使水汽向上输送、 在上层逆温下累积并伴随大幅降温引起的; 地面雾浓度爆发性增强时, 近地层冷平流降温导致饱和水汽压减小, 同时上层系统性的下沉增温引起逆温增强, 水汽得以累积; 雾顶的迅速下降过程中, 雾顶部湍流发展, 同时下沉运动引起了气层增温、 雾体双层结构和低空急流的出现; 地面雾的迅速减弱是太阳辐射和动量下传共同作用的结果; 下沉运动对雾生消的作用具有双重性; 雾的双层结构出现在雾顶大幅下降过程中, 并加快了雾顶的下降速度, 这与以往研究中双层结构促使雾顶爆发性发展有很大差异。  相似文献   

2.
天津一次强浓雾过程和液氮播入冷雾后微结构的变化   总被引:1,自引:0,他引:1  
利用天津武清雾综合观测资料,对一次强浓雾个例的形成、成熟到消散不同阶段边界层结构和微物理特征进行分析,同时进行了液氮消雾试验,观测雾微物理结构的变化响应。结果表明:近地面持续降温、暖平流水汽输送和深厚逆温是造成此次强浓雾的主要原因。雾滴谱拓宽具有爆发性发展特征。强浓雾平均谱在6 μm出现峰值。液氮播入强浓雾期间,雾滴谱在11 μm附近出现峰值,直径范围在8 μm到21 μm数密度增加明显,量级约高达10倍左右,而停止播撒液氮后谱型恢复与自然强浓雾雾滴谱一致,这与液氮的冰晶效应有关。  相似文献   

3.
一次深厚浓雾过程的边界层特征和生消物理机制   总被引:6,自引:2,他引:4  
杨军  王蕾  刘端阳  李子华 《气象学报》2010,68(6):998-1006
2007年12月13-14日,南京出现一次厚度达600 m、持续近14 h的浓雾过程,其中强浓雾阶段维持4 h.通过系留气球边界层探测系统、涡动协方差测量系统、雾滴尺度分布和自动气象站等外场试验资料分析了此次深厚浓雾过程的边界层结构特征和生消物理机制.结果表明,此次雾过程首先由地面辐射冷却形成贴地雾层,而后因低空平流冷却形成低云.在发展阶段,伴随低云不断下伸,贴地雾层不断抬升.在贴地雾层受到地面弱冷空气平流降温影响下,雾中微物理过程迅速发展,雾滴数密度、含水量、平均直径、最大直径等微物理参数在15 min内跃增,雾体爆发性升高,最终导致地面雾和低云上下贯通形成深厚雾层,地面能见度骤降至15 m以下.雾体爆发性增强时,地面垂直动量通量和向下长波辐射通量密度增大,净辐射趋于零.整个雾过程中,由于贴地层持续弱冷平流降温和上层雾阻碍了下层雾的辐射降温,二者的共同作用使贴地强逆温结构始终维持.  相似文献   

4.
雨后两次强浓雾的爆发性增强过程   总被引:2,自引:2,他引:0  
2015年12月在南京市郊进行雾的外场综合试验,观测得到20—21日雨后两次强浓雾的爆发性增强过程。利用常规气象资料、边界层廓线、雾滴谱等,分析此次典型雾过程的天气背景和边界层结构特征,探讨雾爆发性增强的原因。结果表明:雨后地表及近地层高湿环境为雾的形成提供了充足的水汽,南京冬季冷高压控制下稳定的天气层结,以及夜间的辐射冷却作用,极有利于辐射雾的产生。而雾的爆发性增强,主要和降温与增湿有关。晴天夜间地表向上长波辐射增强引起的强降温,日出后地面的强蒸发作用使得近地表水汽增多,都可直接引起雾的爆发性变浓。强的贴地逆温层的形成是雾爆发性增强的关键,易于近地面水汽的积累。而超低空急流的产生,有利于加速逆温层的贴地增强。  相似文献   

5.
南京冬季浓雾的演变特征及爆发性增强研究   总被引:5,自引:2,他引:3  
2007年12月18—19日,南京地区出现了一次持续20h的浓雾过程,其中能见度低于50m的强浓雾几乎占到整个雾过程的1/3。利用同期在南京市北郊的外场观测数据,结合NCEP再分析资料,分析了该次雾的演变过程、微物理结构及边界层特征,探讨了地面雾爆发性增强的成因。结果表明:本次雾在西南平流的增湿作用下触发生成;日出后,平流输送和地表蒸发提供了充足水汽来源,贴地层逆温因高空下沉增温而向上抬升且稳定存在,因此大雾得以维持;整个雾过程中雾滴数浓度、平均直径、含水量随时间的变化趋势基本一致,平均谱曲线均呈指数下降分布,雾滴集中在小滴端;两次地面雾爆发性增强均发生在夜间,其特征为各微物理参量明显增大,滴谱上抬拓宽;爆发性增强的原因是地表气温陡降、贴地层逆温增强及可充当雾滴凝结核的气溶胶大粒子数增多。  相似文献   

6.
天津一次雾过程的边界层特征研究   总被引:4,自引:2,他引:2  
蔡子颖  韩素芹  吴彬贵  黄鹤  姚青 《气象》2012,38(9):1103-1109
雾作为边界层内一种特殊的天气现象与边界层结构有着密切联系。本文利用天津边界层梯度观测平台分析2010年11月28日至12月2日一次雾过程的边界层结构特征。结果表明:此次过程雾Ⅰ阶段水汽最先在离地面80~100 m的高度凝结,雾Ⅱ(平流雾)阶段水汽由上往下传输;雾Ⅰ前,大气有明显的逆温,雾Ⅱ前大气处于不稳定状态,雾中大气趋于中性,在雾变薄过程中,边界层气象塔可观测到雾顶的强逆温;雾中长波辐射达到平衡,净长波辐射为0,可用此区分水雾和霾;雾对光化学烟雾有抑制作用,NO_x和小粒子会出现累积,影响人体健康。  相似文献   

7.
利用那曲市色尼区常规气象观测资料,结合NCEP(1°×1°)、Era5(0.25°×0.25°)再分析资料,从天气学角度对2019年4月10日藏北一次浓雾天气的形成机制、物理结构特征以及局地性爆发的成因进行诊断分析。结果表明:此次浓雾具有局地爆发性特征;前期积雪融化的水汽蒸发配合风场辐合作用,为此次大雾的形成提供了水汽条件;500 hPa环流背景及边界层内上层暖平流与下层冷平流配置,为大雾的形成提供了弱风与稳定层结条件,从而雾得以发展且维持;夜间少云,地表净辐射加强,降温冷却作用导致水汽达到饱和状态,利于水汽凝结形成无数悬浮于空气里的小雾滴;近地层风速小、逆温及下沉运动使水汽不易向高空扩散,在相对有限的空间内水汽大量汇聚,导致大雾爆发性发展;大雾的局地性与特殊地形关系密切。  相似文献   

8.
江苏一次大范围的爆发性强浓雾过程研究   总被引:7,自引:4,他引:3  
利用江苏省70个自动观测站和365个交通气象观测站资料,对2016年2月11日夜间至12日上午出现在江苏的一次大范围强浓雾天气过程进行分析。结果表明:这次强浓雾过程具有爆发性形成和加强的特征,大部分站点从1000m以上快速下降形成强浓雾,且部分站点存在多次爆发增强现象;夜间天空打开,长波辐射降温作用加强,是大范围强浓雾形成和爆发性发展的一个重要原因;同时,雾前降雨为本次强浓雾的形成创造了基础条件,也是日出后部分站点由于水汽蒸发增强而导致雾爆发性增强的直接原因;另外,雾前和雾期间近地层强逆温的存在为雾的爆发性发展提供了稳定的大气层结条件,而逆温顶附近低空急流的形成,也一定程度上促进了逆温的维持和加强,利于雾的爆发性发展。  相似文献   

9.
利用常规观测资料、微波辐射仪和风廓线仪等资料对2007年10月25~27日期间雾天气过程进行分析。结果表明:(1)此次雾天气过程是在大的天气背景下形成的,高低空和地面形势均有利于雾形成和维持;(2)微波辐射仪反演产品可以清楚地看出高低空湿度的配置以及雾维持的机理;(3)进一步分析温湿特点可以看出,地面温度、2 000 m高度下的逆温厚度和最大强度变化与能见度、雾、浓雾、强浓雾之间的转换关系密切;雾出现对应地面降温幅度最大,雾期间有逆温(特别是贴地逆温);雾期间地面相对湿度均在83%以上,浓雾在90%以上,强浓雾在97%以上;雾刚生成并没有液态水,1 h后出现液态水,在天气系统接近前均是100 m高度上液态水含量最大;(4)雾期间边界层内600~700 m高度以下,水平风速比较小,在600 m高度上下水平风速切变很明显;(5)雾过程期间边界层维持微弱的上升和下沉运动。  相似文献   

10.
利用常规气象观测资料、射阳站探空资料、旋翼无人机探测资料等,分析2019年10月19日夜间到20日江苏东部沿海地区一次强浓雾过程的边界层特征。根据无人机垂直观测资料及湍流参数Ri结果发现:大雾形成之前到大雾成熟阶段,近地面始终存在强贴地逆温,最大逆温强度达4.6℃/(100 m)。在大雾形成到发展阶段,逆温逐渐增强,弱湍流区的发展高度也逐渐抬升,最大发展高度达280 m,雾层厚度逐渐增大。大雾成熟阶段,逆温层高度达到最大250 m,而此时受太阳辐射影响,逆温层上层湍流开始逐渐增强,弱湍流区发展高度降至150 m。大雾消散阶段,逆温减弱,雾层厚度迅速降低,湍流增强,逆温层逐渐趋于消散。在大雾形成之前到大雾成熟阶段,逆温层之上均存在较大的东南风,海上暖湿气流的输送不仅使逆温得以加强和维持,而且在冷的下垫面上促进了水汽凝结,从而形成了东部沿海地区的强浓雾。无人机垂直观测完整的获取了此次大雾过程的边界层结构变化特征,Ri的结果很好地反映了大雾发生期间稳定层高度的变化情况。  相似文献   

11.
南京冬季平流雾的生消机制及边界层结构观测分析   总被引:7,自引:0,他引:7  
利用系留飞艇边界层要素探测系统等设备,对2006年12月24q7日发生在南京地区的雾日边界层结构进行了综合探测,深入研究了这次平流雾的生消机制及边界层结构。结果表明:此次雾属于比较典型的平流雾,生成和维持主要决定于暖湿气流和系统性下沉运动,消散主要是干冷空气南下造成的;雾项下降阶段出现了双层结构,中层逆温是逆温主层,属于下沉逆温及平流逆温,主逆温层强中心始终位于雾顶附近或处于雾顶之下;风速随高度呈现多峰分布,中层急流与强度较弱的中上层和上层急流合并后,又与下层急流出现了一强一弱的波动;在风速较小时,风场趋于均匀化;雾消散时,低层风场趋于线性化;雾主要的水汽来源是暖湿气流;比湿场与风场有较好的时空分布对应性,主逆温层强中心也是逆湿强中心,风场与温度场共同主导了比湿场的时空分布。  相似文献   

12.
A time series of microwave radiometric profiles over Arctic Canada’s Cape Bathurst (70°N, 124.5°W) flaw lead polynya region from 1 January to 30 June, 2008 was examined to determine the general characteristics of the atmospheric boundary layer in winter and spring. A surface based or elevated inversion was present on 97% of winter (January–March) days, and on 77% of spring (April–June) days. The inversion was the deepest in the first week of March (≈1100 m), and the shallowest in June (≈250 m). The mean temperature and absolute humidity from the surface to the top of the inversion averaged 250.1 K (−23.1°C), and 0.56 × 10−3 kg m−3 in winter, and in spring averaged 267.5 K (−5.6°C), and 2.77 × 10−3 kg m−3. The median winter atmospheric boundary-layer (ABL) potential temperature profile provided evidence of a shallow, weakly stable internal boundary layer (surface to 350 m) topped by an inversion (350–1,000 m). The median spring profile showed a shallow, near-neutral internal boundary layer (surface to 350 m) under an elevated inversion (600–800 m). The median ABL absolute humidity profiles were weakly positive in winter and negative in spring. Estimates of the convergence of sensible heat and water vapour from the surface that could have produced the turbulent internal boundary layers of the median profiles were 0.67 MJ m−2 and 13.1 × 10−3 kg m−2 for the winter season, and 0.66 MJ m−2 and 33.4 × 10−3 kg m−2 for the spring season. With fetches of 10–100 km, these accumulations may have resulted from a surface sensible heat flux of 15–185 W m−2, plus a surface moisture flux of 0.001–0.013 mm h−1 (or a latent heat flux of 0.7–8.8 W m−2) in winter, and 0.003–0.033 mm h−1 (or a latent heat flux of 2–22 W m−2) in spring.  相似文献   

13.
A new scientific payload is introduced for fine-scale measurements of meteorological (wind vector, static air temperature, humidity, and air pressure) and microphysical (aerosol particles and cloud droplets) properties, suspended below a tethered balloon. The high resolution sensors and the tethered balloon are described. Measurements in a lifted fog layer from a first field campaign are presented.The detailed investigation of the fog/haze and the temperature inversion layer demonstrates the damping influence of the fog on temperature fluctuations, while thewind fluctuations are significantly decreased by theevolving temperature inversion, whichwas about 30 m above the fog layer.From spectral analysis the noise floors of the high-resolution sensors are determined to10-6 kg m-3 for the LWC (liquid water content) and 4 mK for the fast temperature sensor (UFT-B). The correlation betweentemperature and LWC structures in shallow haze layers is investigated. The release of latent heat and the corresponding warming in the haze of about 0.1 K could be quantified.  相似文献   

14.
2004年冬季华北平原持续大雾天气的诊断分析   总被引:34,自引:8,他引:26  
康志明  尤红  郭文华  杨克明 《气象》2005,31(12):51-56
利用GTS1型数字式探空仪探测的资料、NCEP 1°×1°的6小时资料和常规观测资料,对2004年冬季华北平原历史上少见的持续大雾天气进行了天气动力学诊断分析。结果表明:华北平原近地面气层900hPa以下的负涡度平流、冷温度平流和弱辐合上升运动引起该层气温下降,900-500hPa的正涡度平流、暖温度平流和辐散下沉运动造成该层气温升高,在上升和下沉运动区的界面层中形成逆温层,逆温层的高度和强度影响雾的形成和状况。夜间辐射热力强迫作用和950hPa以下的微风是大雾形成的动力因子。大雾边界层中存在的水汽饱和层是在特定的环流形势下华北平原低空盛行东和东南向岸气流,将北部海面的水汽向西向北平流到冷近地面气层中的结果。  相似文献   

15.
2018年11月23日至12月3日,华北平原出现了一次较长时间的雾霾天气。利用常规气象观测资料、NCEP/NCAR再分析资料和污染物浓度资料,以河南省濮阳市为例,对此过程的大尺度环流背景场、边界层内气象要素特征、动力因素和污染状况等进行综合分析,分3个阶段探讨此过程形成的原因和维持机制。结果表明:(1)雾霾发生在高空纬向环流背景下,华北处于高压脊前西北气流中,频繁受下滑短波槽影响。(2)冷空气活动偏弱,中低层维持暖脊控制,使边界层内出现较强逆温,制约低层水汽和污染物的垂直扩散。(3)地面处于均压场或锋后弱冷高压控制,弱风条件不利于污染物的水平扩散。(4)前期大雾形成时,强逆温层在900 hPa以下的贴地高度,能见度很低,污染严重;中期霾严重时,较强逆温层上移至900—850 hPa,并出现双层逆温,能见度虽较好,污染仍然严重;后期的雾霾主要由高湿度环境中污染物聚集吸湿增长造成。(5)中低空弱的下沉气流及近地面辐合风场是雾霾天气得以发展维持的动力因子。  相似文献   

16.
为研究雾和霾天气下VOCs时空变化特征,于2020年11月19 日—2021年1月15日在江苏省东海国家气象观测站进行为期58 d的外场观测试验。利用自主研发的多旋翼无人机捕获2次辐射雾和2次霾天气过程,获得气温、气压、相对湿度、风向、风速、VOCs、O3等7种要素100多条垂直廓线。结果表明:时间上,霾过程夜间VOCs体积浓度(0.225~0.253 ppm(parts per million, 1 ppm=10-6))明显高于白天(0.191~0.205 ppm),雾形成前体积浓度(0.121~0.239 ppm)显著高于雾过程(0.056~0.209 ppm)。雾过程中VOCs体积浓度与雾强度变化相反,雾层高度与VOCs体积浓度剧烈变化高度一致,雾层(<200 m)中VOCs体积浓度(0.172~0.178 ppm)明显减小,显著低于雾形成前(0.195~0.240 ppm),雾层以上浓度变化大,雾结束后1 h内保持雾过程中分布特点。雾对逆温层中的水溶性污染物有清除作用,VOCs体积浓度和O3质量浓度均下降。  相似文献   

17.
本文利用沙坪坝基本气象站2005~2010年逐日08,20时L波段雷达探空资料,对不同类型雾日期间边界层逆温特征进行分析。结果表明:从季节上来看雾日主要发生在秋冬季节,雾日期间不论是08时还是20时均有多层逆温存在,各类型雾日逆温温差均为08时大于20时,而逆温强度表现为20时大于08时,不论是雾日,轻雾日还是浓雾日,08时逆温层厚度都比20时要厚。总的来说,浓雾日的逆温层各要素都体现逆温特征较为明显的特点,逆温温差越大,逆温层厚度越厚,也就更容易形成浓雾,同时08时的各逆温要素均高于20时,08时逆温特征也更为明显,在这时段也就更容易形成雾。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号