首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
区域海气耦合模式对中国夏季降水的模拟   总被引:8,自引:0,他引:8  
姚素香  张耀存 《气象学报》2008,66(2):131-142
以区域气候模式RegCM3和普林斯顿海洋模式POM为基础,建立了一个区域海气耦合模式,对1963-2002年中国夏季气候进行模拟,重点分析该耦合模式对中国夏季降水的模拟性能以及降水模拟改进的可能原因.结果表明:耦合模式对中国夏季雨带分布的模拟明显优于控制试验(单独的大气模式),对长江流域以及华南降水的模拟性能改进尤为明显,同时耦合模式能够更为真实地刻画中国东部地区汛期雨带的移动.对降水的年际变化分析发现,耦合模式模拟的1963-2002年中国夏季降水年际变率与观测吻合,模拟的夏季长江流域降水与观测降水相关系数达到0.48,模拟的华南夏季降水与观测的相关系数达到0.61,而控制试验结果与观测降水的相关系数均较小.对中国东部长江流域夏季降水与近海海温的相关分析表明,用给定海温驱动的大气模式,并不能正确模拟出中国东部夏季降水与海温的关系,而耦合模式能够较好地模拟出长江流域与孟加拉湾、南海以及黑潮区海温的关系,与GISST(全球海冰和海表温度)和观测降水相关关系一致.对水汽输送通量的分析发现,控制试验模拟的水汽输送路径与NCEP/NCAR再分析资料相比差别较大,耦合模式模拟的来自海洋上的水汽输送强度和路径与NCEP/NCAR再分析资料一致,提高了耦合模式对水汽输送的模拟能力,从而改善了模式对华南以及长江流域降水的模拟.  相似文献   

2.
钱永甫  王谦谦 《气象科学》1995,15(4):103-117
本文第一部分设计了一个海洋表层流模式,较成功地模拟出冬夏季海表层中的大尺度洋流和海面高度第二部分是月时间尺度的海气耦合试验,将海表层洋流模式和球带范围的大气模式相耦合,用数值试验讨论了洋流和海气耦合方式对模拟结果的影响。  相似文献   

3.
While time-slice simulations with atmospheric general circulation models (GCMs) have been used for many years to regionalize climate projections and/or assess their uncertainties, there is still no consensus about the method used to prescribe sea surface temperature (SST) in such experiments. In the present study, the response of the Indian summer monsoon to increasing amounts of greenhouse gases and sulfate aerosols is compared between a reference climate scenario and three sets of time-slice experiments, consisting of parallel integrations for present-day and future climates. Different monthly mean SST boundary conditions have been tested in the present-day integrations: raw climatological SST derived from the reference scenario, observed climatological SST, and observed SST with interannual variability. For future climate, the SST forcing has been obtained by superimposing climatological monthly mean SST anomalies derived from the reference scenario onto the present-day SST boundary conditions. None of these sets of time-slice experiments is able to capture accurately the response of the Indian summer monsoon simulated in the transient scenario. This finding suggests that the ocean–atmosphere coupling is a fundamental feature of the climate system. Neglecting the SST feedback and variability at the intraseasonal to interannual time scales has a significant impact on the projected monsoon response to global warming. Adding interannual variability in the prescribed SST boundary conditions does not mitigate the problem, but can on the contrary reinforce the discrepancies between the forced and coupled experiments. The monsoon response is also shown to depend on the simulated control climate, and can therefore be sensitive to the use of observed rather than model-derived SSTs to drive the present-day atmospheric simulation, as well as to any approximation in the prescribed radiative forcing. While such results do not challenge the use of time-slice experiments for assessing uncertainties and understanding mechanisms in transient scenarios, they emphasize the need for high-resolution coupled atmosphere-ocean GCMs for dynamical downscaling, or at least for high-resolution atmospheric GCMs coupled with a slab or a regional ocean model.  相似文献   

4.
区域海气耦合模式是研究局地海气相互作用过程影响气候变率的重要平台,也是对全球气候模式进行"动力降尺度"的重要工具.本文介绍了LASG(State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics)/IAP(Institute of Atmospheric Physics)发展的区域海气耦合模式FROALS(Flexible Regional Ocean-Atmosphere-Land System model),并总结了过去五年围绕该区域海气耦合模式开展的研究工 作.FROALS的特点之一是有两个完全不同的大气模式分量和海洋模式分量选项,可以适应不同的模拟研究需 求.针对区域海气耦合模式在西北太平洋地区的模拟偏差,通过分步骤考察不同大气模式分量和不同海洋模式分量对模式模拟性能的影响,指出大气模式是导致区域海气耦合偏差的主要分量.通过改进对流触发的相对湿度阈值标准,有效地改善了此前区域海气耦合模式在亚洲季风区普遍出现的"模拟海温冷偏差".改进的FROALS对西北太平洋地区的大气和海洋环境有较好的模拟能力,合理地再现了西北太平洋地区表层洋流气候态和年际变率.较之非耦合模式,考虑区域海气耦合过程后,改进了东亚和南亚地区的降水和热带气旋潜势年际变率的模拟.最后,针对东亚—西北太平洋地区,利用FROALS对IAP/LASG全球气候模式模拟和预估的结果进行了动力降尺 度,得到了东亚区域50 km高分辨率区域气候变化信息.分析显示,FROALS模拟得到的东亚区域气候较之全球气候模式和非耦合区域气候模式结果具有明显的"增值",显示出区域海气耦合模式在该区域良好的应用前景.  相似文献   

5.
回顾了近年来在中国科学院大气物理研究所开展的有关短期气候预测研究的进展。第一个短期气候数值预测是曾庆存等利用一个耦合了热带太平洋海洋环流模式的全球大气环流模式作出的。1997年,一个基于海气耦合模式的ENSO预测系统,包括一个海洋初始化方案被建立起来,同时也开展了基于海温异常的东亚气候可预测性研究。利用气候变动的准两年信号,王会军等提出了一个可以显著改进模式预测准确率的模式结果修正方案。为了考虑土壤湿度的初始异常对夏季气候的影响,一个利用大气资料如温度、降水等经验地反演土壤湿度的方法也被建立起来。还通过一系列的数值试验研究了 1998年夏季大水发生当中海温异常和大气环流初始异常的作用。  相似文献   

6.
Studies on the seasonal to extraseasonal climate prediction at the Institute of Atmospheric Physics (IAP) in recent years were reviewed. The first short-term climate prediction experiment was carried out based on the atmospheric general circulation model (AGCM) coupled to a tropical Pacific oceanic general circulation model (OGCM). In 1997, an ENSO prediction system including an oceanic initialization scheme was set up. At the same time, researches on the SST-induced climate predictability over East Asia were made. Based on the biennial signal in the interannual climate variability, an effective method was proposed for correcting the model predicted results recently. In order to consider the impacts of the initial soil mois ture anomalies, an empirical scheme was designed to compute the soil moisture by use of the atmospheric quantities like temperature, precipitation, and so on. Sets of prediction experiments were carried out to study the impacts of SST and the initial atmospheric conditions on the flood occurring over China in 1998.  相似文献   

7.
 The interannual variability over the tropical Pacific and a possible link with the mean state or the seasonal cycle is examined in four coupled ocean-atmosphere general circulation models (GCM). Each model is composed of a high-resolution ocean GCM of either the tropical Pacific or near-global oceans coupled to a moderate-resolution atmospheric GCM, without using flux correction. The oceanic subsurface is considered to describe the mean state or the seasonal cycle through the analytical formulations of some potential coupled processes. These coupled processes characterise the zonal gradient of sea surface temperature (hereafter SST), the oceanic vertical gradient of temperature and the equatorial upwelling. The simulated SST patterns of the mean state and the interannual signals are generally too narrow. The grid of the oceanic model could control the structure of the SST interannual signals while the behaviour of the atmospheric model could be important in the link between the oceanic surface and the subsurface. The first SST EOFs are different between the coupled models, however, the second SST EOFs are quite similar and could correspond to the return to the normal state while that of the observations (COADS) could favour the initial anomaly. All the models seem to simulate a similar equatorial wave-like dynamics to return to the normal state. The more the basic state is unstable from the coupled processes point of view, the more the interannual signal are high. It seems that the basic state could control the intensity of the interannual variability. Two models, which have a significant seasonal variation of the interannual variance, also have a significant seasonal variation of the instability with a few months lag. The potential seasonal phase locking of the interannual fluctuations need to be examined in more models to confirm its existence in current tropical GCMs. Received: 30 July 1999 / Accepted: 25 April 2000  相似文献   

8.
A new hybrid coupled model(HCM) is presented in this study, which consists of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model. The ocean component is the intermediate ocean model(IOM)of the intermediate coupled model(ICM) used at the Institute of Oceanology, Chinese Academy of Sciences(IOCAS). The atmospheric component is ECHAM5, the fifth version of the Max Planck Institute for Meteorology atmospheric general circulation model. The HCM integrates its atmospheric and oceanic components by using an anomaly coupling strategy. A100-year simulation has been made with the HCM and its simulation skills are evaluated, including the interannual variability of SST over the tropical Pacific and the ENSO-related responses of the global atmosphere. The model shows irregular occurrence of ENSO events with a spectral range between two and five years. The amplitude and lifetime of ENSO events and the annual phase-locking of SST anomalies are also reproduced realistically. Despite the slightly stronger variance of SST anomalies over the central Pacific than observed in the HCM, the patterns of atmospheric anomalies related to ENSO,such as sea level pressure, temperature and precipitation, are in broad agreement with observations. Therefore, this model can not only simulate the ENSO variability, but also reproduce the global atmospheric variability associated with ENSO, thereby providing a useful modeling tool for ENSO studies. Further model applications of ENSO modulations by ocean–atmosphere processes, and of ENSO-related climate prediction, are also discussed.  相似文献   

9.
IAP第四代大气环流模式的耦合气候系统模式模拟性能评估   总被引:7,自引:2,他引:5  
本文首先扼要介绍了基于中国科学院大气物理研究所(简称IAP)第四代大气环流模式的新气候系统模式-CAS-ESM-C(中国科学院地球系统模式气候系统模式分量)的发展和结构,之后主要对该模式在模拟大气、海洋、陆面和海冰的气候平均态、季节循环以及主要的年际变率等方面的能力做一个初步的评估.结果表明:模式没有明显的气候漂移,各...  相似文献   

10.
李斐斐  徐彩艳 《气象学报》2023,81(1):124-136
北大西洋涛动作为冬季北大西洋地区大气环流的主模态之一,其年际变率对全球许多地区气候变率具有重要影响,但目前其预测技巧并不高。采用降维投影四维变分同化方法,在耦合模式中建立了基于全球大气资料的弱耦合资料同化系统,直接同化月平均再分析资料,并进行了年代际后报试验。结果表明,通过耦合资料同化的手段,可以显著提升耦合模式对冬季北大西洋涛动年际变率及其相关的欧洲北部、美国东部、欧亚大陆北部的冬季近地面温度年际变率的后报效果,相关系数均超过0.05显著水平t检验。该后报效果的改进主要与在耦合同化过程中通过耦合模式中自由发展的海-气相互作用将大气的观测信息储存在耦合模式的海洋分量中,改进了冬季北大西洋地区海表温度“三极”型分布的时空变率及其时间序列的后报效果有关。该研究强调了耦合模式初始状态的准确度对提升冬季北大西洋涛动年际变率的后报技巧具有重要作用。  相似文献   

11.
Tropical–extratropical climate interactions are studied by idealized experiments with a prescribed 2°C SST anomaly at different latitude bands in a coupled climate model. Instead of focusing on intrinsic climate variability, this work investigates the mean climate adjustment to remote external forcing. The extratropical impact on tropical climate can be as strong as the tropical impact on extratropical climate, with the remote sea surface temperature (SST) response being about half the magnitude of the imposed SST change in the forcing region. The equatorward impact of extratropical climate is accomplished by both the atmospheric bridge and the oceanic tunnel. About two-thirds of the tropical SST change comes from the atmospheric bridge, while the remaining one-third comes from the oceanic tunnel. The equatorial SST increase is first driven by the reduced latent heat flux and the weakened poleward surface Ekman transport, and then enhanced by the decrease in subtropical cells’ strength and the equatorward subduction of warm anomalies. In contrast, the poleward impact of tropical climate is accomplished mainly by the atmospheric bridge, which is responsible for extratropical temperature changes in both the surface and subsurface. Sensitivity experiments also show the dominant role of the Southern Hemisphere oceans in the tropical climate change. CCR contribution number 829; DAS-PKU contribution number 002.  相似文献   

12.
利用大气环流模式模拟北大西洋海温异常强迫响应   总被引:3,自引:1,他引:3  
李建  周天军  宇如聪 《大气科学》2007,31(4):561-570
北大西洋地区的海温异常能够在多大程度上对大气产生影响,一直是一个有争议的问题。作者利用伴随北大西洋涛动出现的海温异常对大气环流模式CAM2.0.1进行强迫,考察了模式在冬季(12月、1月和2月)对三核型海温异常的响应。通过与欧洲中期天气预报中心提供的再分析资料的对比,发现该模式可以通过海温强迫在一定程度上再现具有北大西洋涛动特征的温度场和环流场。在北大西洋及其沿岸地区,模式模拟出了三核型的准正压响应,与经典的北大西洋涛动型大气异常是一致的。模式结果与北大西洋地区大气内部主导模态的差别主要体现在两个方面:一是异常中心位置多偏向于大洋上空,在陆地上的异常响应强度很弱;二是高纬地区对海温异常的响应不显著,没有强迫出与实际的大气模态相对应的异常中心,表明该地区海洋的反馈作用较弱。  相似文献   

13.
14.
An ensemble of nine experiments with the same interannually varying sea surface temperature (SST), as boundary forcing, and different initial conditions is used to investigate the role of tropical oceans in modulating precipitation variability in the region of La Plata Basin (LPB). The results from the ensemble are compared with a twentieth-century experiment performed with a coupled ocean-atmosphere model, sharing the same atmospheric component. A rotated empirical orthogonal functions analysis of South America precipitation shows that the dominant mode of variability in spring is realistically captured in both experiments. Its principal component (RPC1) correlated with global SST and atmospheric fields identifies the pattern related to El Niño Southern Oscillation and its large-scale teleconnections. Overall the pattern is well simulated in the tropical southern Pacific Ocean, mainly in the ensemble, but it is absent or too weak in other oceanic areas. The coupled model experiment shows a more realistic correlation in the subtropical South Atlantic where air-sea interactions contribute to the relationship between LPB precipitation and SST. The correspondence between model and data is much improved when the composite analysis of SST and atmospheric fields is done over the ensemble members having an RPC1 in agreement with the observations: the improvement relies on avoiding climate noise by averaging only over members that are statistically similar. Furthermore, the result suggests the presence of a high level of uncertainty due to internal atmospheric variability. The analysis of some individual years selected from the model and data RPC1 comparison reveals interesting differences among rainy springs in LPB. For example, 1982, which corresponds to a strong El Niño year, represents a clean case with a distinct wave train propagating from the central Pacific and merging with another one from the eastern tropical south Indian Ocean. The year 2003 is an example of a rainy spring in LPB not directly driven by remote SST forcing. In this case the internal variability has a dominant role, as the model is not able to reproduce the correct local precipitation pattern.  相似文献   

15.
This study introduces a new global climate model--the Integrated Climate Model (ICM)--developed for the seasonal prediction of East Asian-western North Pacific (EA-WNP) climate by the Center for Monsoon System Research at the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. ICM integrates ECHAM5 and NEMO2.3 as its atmospheric and oceanic components, respectively, using OASIS3 as the coupler. The simulation skill of ICM is evaluated here, including the simulated climatology, interannual variation, and the influence of E1 Nifio as one of the most important factors on EA-WNP climate. ICM successfully reproduces the distribution of sea surface temperature (SST) and precipitation without climate shift, the seasonal cycle of equatorial Pacific SST, and the precipitation and circulation of East Asian summer monsoon. The most prominent biases of ICM are the excessive cold tongue and unrealistic westward phase propagation of equatorial Pacific SST. The main interannual variation of the tropical Pacific SST and EA-WNP climate E1 Nifio and the East Asia-Pacific Pattern--are also well simulated in ICM, with realistic spatial pattern and period. The simulated E1 Nifio has significant impact on EA-WNP climate, as in other models. The assessment shows ICM should be a reliable model for the seasonal prediction of EA-WNP climate.  相似文献   

16.
Influence of SST biases on future climate change projections   总被引:1,自引:0,他引:1  
We use a quantile-based bias correction technique and a multi-member ensemble of the atmospheric component of NCAR CCSM3 (CAM3) simulations to investigate the influence of sea surface temperature (SST) biases on future climate change projections. The simulations, which cover 1977?C1999 in the historical period and 2077?C2099 in the future (A1B) period, use the CCSM3-generated SSTs as prescribed boundary conditions. Bias correction is applied to the monthly time-series of SSTs so that the simulated changes in SST mean and variability are preserved. Our comparison of CAM3 simulations with and without SST correction shows that the SST biases affect the precipitation distribution in CAM3 over many regions by introducing errors in atmospheric moisture content and upper-level (lower-level) divergence (convergence). Also, bias correction leads to significantly different precipitation and surface temperature changes over many oceanic and terrestrial regions (predominantly in the tropics) in response to the future anthropogenic increases in greenhouse forcing. The differences in the precipitation response from SST bias correction occur both in the mean and the percent change, and are independent of the ocean?Catmosphere coupling. Many of these differences are comparable to or larger than the spread of future precipitation changes across the CMIP3 ensemble. Such biases can affect the simulated terrestrial feedbacks and thermohaline circulations in coupled climate model integrations through changes in the hydrological cycle and ocean salinity. Moreover, biases in CCSM3-generated SSTs are generally similar to the biases in CMIP3 ensemble mean SSTs, suggesting that other GCMs may display a similar sensitivity of projected climate change to SST errors. These results help to quantify the influence of climate model biases on the simulated climate change, and therefore should inform the effort to further develop approaches for reliable climate change projection.  相似文献   

17.
南亚夏季风的变化决定着印度半岛的旱涝状况,气候系统模式则是研究南亚夏季风变化规律的重要工具。本文基于观测和JRA55再分析资料,系统评估了FGOALS-g3模式模拟的南亚夏季风气候态和年际变率,并重点关注FGOALS-g3与FGOALS-g2以及是否考虑海气相互作用的模拟差异。结果表明,由于局地海温模拟的变化,相比于FGOALS-g2,FGOALS-g3模拟的南亚夏季风在气候态热带印度洋信风和El Ni?o期间沃克环流下沉支上有明显改进。同时,由于对流层系统性冷偏差持续存在并且中心位于副热带300 hPa附近,造成气候态上经向温度梯度减弱,使季风环流减弱,导致FGOALS-g3中陆地季风槽的水汽辐散偏差和降水干偏差仍然存在;在年际变率上,FGOALS-g3模拟的El Ni?o期间赤道西太平洋海温冷异常偏弱,印度洋偶极子偏强,导致印度半岛下沉运动减弱,FGOALS-g3中ENSO—印度降水负相关关系也依然偏弱。研究表明,耦合过程导致的气候态海温偏差通过改变环流和水汽输送,有效补偿了大气模式中印度半岛中部和中南半岛的降水湿偏差;在年际变率上,耦合模式由于考虑了海温—降水—云短波辐射的负反馈过程,能够减小大气模式模拟偏差的强度,但印太暖池区海温模拟偏差导致沃克环流下沉支偏西,使得印度半岛的降水响应出现更大的湿偏差。  相似文献   

18.
Results are first presented from an analysis of a global coupled climate model regarding changes in future mean and variability of south Asian monsoon precipitation due to increased atmospheric CO2 for doubled (2 × CO2) and quadrupled (4 × CO2) present-day amounts. Results from the coupled model show that, in agreement with previous studies, mean area-averaged south Asian monsoon precipitation increases with greater CO2 concentrations, as does the interannual variability. Mechanisms producing these changes are then examined in a series of AMIP2-style sensitivity experiments using the atmospheric model (taken from the coupled model) run with specified SSTs. Three sets of ensemble experiments are run with SST anomalies superimposed on the AMIP2 SSTs from 1979–97: (1) anomalously warm Indian Ocean SSTs, (2) anomalously warm Pacific Ocean SSTs, and (3) anomalously warm Indian and Pacific Ocean SSTs. Results from these experiments show that the greater mean monsoon precipitation is due to increased moisture source from the warmer Indian Ocean. Increased south Asian monsoon interannual variability is primarily due to warmer Pacific Ocean SSTs with enhanced evaporation variability, with the warmer Indian Ocean SSTs a contributing but secondary factor. That is, for a given interannual tropical Pacific SST fluctuation with warmer mean SSTs in the future climate, there is enhanced evaporation and precipitation variability that is communicated via the Walker Circulation in the atmosphere to the south Asian monsoon to increase interannual precipitation variability there. This enhanced monsoon variability occurs even with no change in interannual SST variability in the tropical Pacific.  相似文献   

19.
The SST-precipitation relationship in the intraseasonal variability (ISV) over the Asian monsoon region is examined using recent high quality satellite data and simulations from a state of the art coupled model, the climate forecast system version 2 (CFSv2). CFSv2 demonstrates high skill in reproducing the spatial distribution of the observed climatological mean summer monsoon precipitation along with its interannual variability, a task which has been a conundrum for many recent climate coupled models. The model also exhibits reasonable skill in simulating coherent northward propagating monsoon intraseasonal anomalies including SST and precipitation, which are generally consistent with observed ISV characteristics. Results from the observations and the model establish the existence of spatial variability in the atmospheric convective response to SST anomalies, over the Asian monsoon domain on intraseasonal timescales. The response is fast over the Arabian Sea, where precipitation lags SST by ~5 days; whereas it is slow over the Bay of Bengal and South China Sea, with a lag of ~12 days. The intraseasonal SST anomalies result in a similar atmospheric response across the basins, which consists of a destabilization of the bottom of the atmospheric column, as observed from the equivalent potential temperature anomalies near the surface. However, the presence of a relatively strong surface convergence over the Arabian Sea, due to the presence of a strong zonal gradient in SST, which accelerates the upward motion of the moist air, results in a relatively faster response in terms of the local precipitation anomalies over the Arabian Sea than over the Bay of Bengal and South China Sea. With respect to the observations, the ocean–atmosphere coupling is well simulated in the model, though with an overestimation of the intraseasonal SST anomalies, leading to an exaggerated SST-precipitation relationship. A detailed examination points to a systematic bias in the thickness of the mixed layer of the ocean model, which needs to be rectified. A too shallow (deep) mixed layer enhances (suppress) the amplitude of the intraseasonal SST anomalies, thereby amplifying (lessening) the ISV and the active-break phases of the monsoon in the model.  相似文献   

20.
Using the hindcasts provided by the Ensemble-Based Predictions of Climate Changes and Their Impacts(ENSEMBLES) project for the period of 1980–2005, the forecast capability of spring climate in China is assessed mainly from the aspects of precipitation, 2-m air temperature, and atmospheric circulations. The ENSEMBELS can reproduce the climatology and dominant empirical orthogonal function(EOF) modes of precipitation and 2-m air temperature, with some differences arising from different initialization months. The multi-model ensemble(MME) forecast of interannual variability is of good performance in some regions such as eastern China with February initialization.The spatial patterns of the MME interannual and inter-member spreads for precipitation and 2-m air temperature are consistent with those of the observed interannual spread, indicating that internal dynamic processes have major impacts on the interannual anomaly of spring climate in China. We have identified two coupled modes between intermember anomalies of the 850-hPa vorticity in spring and sea surface temperature(SST) both in spring and at a lead of 2 months, of which the first mode shows a significant impact on the spring climate in China, with an anomalous anticyclone located over Northwest Pacific and positive precipitation and southwesterly anomalies in eastern China.Our results also suggest that the SST at a lead of two months may be a predictor for the spring climate in eastern China. A better representation of the ocean–atmosphere interaction over the tropical Pacific, Northwest Pacific, and Indian Ocean can improve the forecast skill of the spring climate in eastern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号