首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
近50年中国气温日较差的变化趋势分析   总被引:23,自引:2,他引:23  
陈铁喜  陈星 《高原气象》2007,26(1):150-157
利用近50年的气温观测资料,对中国地区的气温日较差的空间分布和时间序列变化特征进行了分析。同时分析了与日最高气温、最低气温以及平均气温时空分布之间的关系。结果发现,近50年来气温日较差呈下降趋势,其平均减小幅度为高纬度地区大于低纬度地区;不同地区及同一地区的DTR季节变化特征也不相同,我国北方多为冬季DTR下降最大,其次是春季和秋季,夏季最小。在黄淮和长江流域,以夏季和春季DTR下降最为显著。华南地区仍以冬季下降最大。气温日较差整体呈现下降趋势,中高纬度下降比低纬度明显。在相同纬度带上,由于地理状况的不同,变化趋势有所不同。同时,气温日较差的变化有明显的区域和季节性差异,特别在西部的青藏高原和新疆地区的DTR变化与东部地区的差异明显。  相似文献   

2.
利用华中区域(河南、湖北、湖南3省)42站1960~2005年逐月平均最高、最低气温资料,计算并详细分析了该区域年(季、月)平均最高、最低气温和气温日较差的线性变化趋势、突变性及周期性特征。结果发现:1)华中区域年平均最高、最低气温均呈现上升趋势,年平均气温日较差呈减小趋势,其中年平均最低气温变化最显著。2)平均最高气温在春、秋、冬均呈上升趋势;平均最低气温四季均呈上升趋势,其中春、冬季变化显著;平均气温日较差在夏、冬季下降趋势较为明显,其中以冬季降幅最大。3)全年有4个月平均最高气温呈下降趋势,其中8月最为显著;平均最低气温在冬、春季为明显上升趋势,其他月变化趋势不显著;平均气温日较差在冬、夏季呈明显下降趋势,其中1月最为显著。4)年平均最高、最低气温在20世纪90年代经历了一次由冷变暖的明显突变;四季中,平均最高气温春、冬季突变显著,平均最低气温春、夏季突变显著。5)年平均最高、最低气温存在显著的2~4a周期变化。  相似文献   

3.
近50a开封市气候变化特征分析   总被引:4,自引:0,他引:4  
利用开封市气象观测站1957-2007年的观测资料,分析了近50 a气候变化的特征,结果表明:开封市年平均气温呈上升趋势,春季气温呈波浪式平缓上升,夏季气温略有下降,秋季气温缓慢上升,冬季气温上升明显;年平均降水量变化趋势不明显,年际波动大,夏季降水呈上升趋势,冬春降水变化不明显,秋季降水下降明显;历年大风日数呈V型上升趋势,夏季上升明显,秋冬两季略有下降;年平均大雾日数呈明显上升趋势;年平均日照时数呈下降趋势,2000年后日照时数下降明显.  相似文献   

4.
水城近50a气温变化特征分析   总被引:1,自引:0,他引:1  
陈海涛 《贵州气象》2009,33(4):23-24
利用水城站1957-2006年的逐月平均气温、平均最高气温及平均最低气温资料,采用线性倾向估计对水城近50a季平均气温及年平均最高、最低气温的年际、年代际变化进行了统计分析。结果表明:近50a来水城年平均气温呈上升趋势,其线性倾向率为0.134℃/10a,春季气温距平近50a来却呈下降趋势,夏、秋、冬季气温呈上升趋势,上升趋势不一致,从各季节平均气温变化幅度来看,秋季最大,夏、冬次之,春季最小。50a来年平均最高气温、年平均最低气温均呈上升趋势。  相似文献   

5.
新疆近50a气温变化趋势和演变特征   总被引:3,自引:0,他引:3  
利用新疆89个气象站1961~2008年的气温资料,分析了新疆近50a气温变化趋势及演变特征。结果表明:新疆各区域年平均气温呈现一致的显著上升趋势,秋、冬季的线性升温趋势最显著;夏、秋季平均气温自20世纪80年代之后呈逐年代上升趋势,尤其是进入21世纪以来增温最明显,其中春季和秋季明显高于夏季,而冬季,北疆和南疆2001~2008年比20世纪90年代气温则分别下降了0.3℃,0.5℃,天山山区则比20世纪90年代高0.3℃;年平均气温、年平均最高气温和年平均最低气温地域变化特征一致,总体表现为增温速率北部大南部小、东部西部大中部小、山区大平原小的特点。年平均最高气温自20世纪80年代呈逐年代上升趋势,而年平均气温从20世纪60年代呈逐年代上升趋势,且其增温速率远远高于年平均最高气温。  相似文献   

6.
城市化对珠三角地区气温及日较差的可能影响   总被引:3,自引:3,他引:0  
利用珠三角地区27个国家基本、基准气象站近50年(1963—2012年)的实际观测资料,结合地理信息系统数据分析了珠三角地区平均气温,平均最高和最低气温的年、季节及日较差的变化趋势以及城市化影响。分析表明:近50年珠三角地区年平均气温、平均最高和最低气温均呈现增加的趋势,日较差除从化、增城、珠海和上川岛呈现弱的正趋势外,其余地区呈现下降趋势。城市化对广州、佛山、惠州年平均气温和平均最低气温的影响均为正值,对日较差的贡献率均为负值,日较差的减小是由城市化造成的,就季节变化而言,城市化影响以秋季最大。改革开放后(1979—2012年)平均气温、平均最高和最低气温强增温区域比近50年范围扩大、强度增加,年平均最高气温增温明显,日较差的正值区域比近50年范围扩大、强度增加,主要出现在珠三角北部一带,高值中心达到0.25℃·(10 a)~(-1)。就城市化而言,广州平均气温、平均最高和最低气温的城市化影响比近50年都有所降低,而佛山、惠州的平均气温、平均最低气温城市化影响均增大。  相似文献   

7.
宁夏气温、降水、蒸发的变化及其对气候变暖的响应   总被引:38,自引:0,他引:38  
本文对近40多a来宁夏气温、降水、小型蒸发皿蒸发量的变化进行了分析,结果表明:宁夏年平均气温具有明显的年代际变化特征,1986年附近发生了一次明显气候跃变,跃变后增温最明显的是冬季;秋季降水量的年代际变化特征较明显,在1978年发生转折,此前宁夏处于多雨时段,其后处于降水偏少的气候背景之中;宁夏小型蒸发皿蒸发量近40 a来存在下降趋势,下降趋势最明显的季节是夏季,最明显的区域是宁南山区;近年来宁夏蒸发量的减少与太阳辐射的减弱及水汽压的增加有关,宁南山区蒸发明显下降,与低云量的减少有关;宁夏平均气温对中国区域气候变暖响应明显,当中国区域平均气温增加1℃(各季及年),宁夏春季平均气温约升高1.1℃,夏、秋、冬季及年平均气温约升高1.3℃;宁夏春季降水量与中国区域同期降水量有密切联系;在全球气候变暖的大背景下,宁夏秋季降水有下降趋势,冬季降水存在上升趋势;宁夏气候有变干的趋势。  相似文献   

8.
基于吉林省50个气象站1960—2014年逐日最高气温、最低气温、日照时数、风速数据,采用Penman-Monteith算法,计算各站逐日参考作物蒸散量,进而计算各站及全省四季和年平均参考作物蒸散量,利用数理统计方法,结合地理信息系统软件,分析参考作物蒸散量的时空变化特征及主要气候影响因子。结果表明:近55 a,吉林省年平均参考作物蒸散量为876 mm,年参考作物蒸散量呈显著下降趋势(p <0. 01);空间分布差异显著,由东南向西北逐级递增,56%的站点呈显著下降趋势(p <0. 05)。参考作物蒸散量夏季最大、春季次之、冬季最小,且均呈下降趋势,但只有春季的下降趋势显著(p <0. 01);春、夏、秋、冬季与年平均参考作物蒸散量在空间分布上基本一致,但气候倾向率为负值以及通过显著性检验的站点数依次减少。全省四季和年参考作物蒸散量均与降水呈显著负相关,与日照时数、风速、最高气温呈显著正相关;其中年、春、夏、秋季与气温日较差以及春、夏、秋季与平均气温也呈显著正相关;冬季与最低气温、平均气温呈显著正相关;而典型站点参考作物蒸散量各季节影响因素及影响大小略有差异,各气象因子的共同作用导致了参考作物蒸散量的变化。  相似文献   

9.
文章利用招远国家气象观测站1981-2015年气温观测资料,运用趋势滑动平均和线性倾向估计方法对招远气象站气温变化特征进行了分析.结果表明:1981-2015年招远气象站年平均气温以0.22℃/10a的速率呈明显上升趋势,且具有明显的阶段性变化特征.季节平均气温均以不同速率上升,冬季气温上升趋势最为显著.年平均最高气温、最低气温均呈上升趋势,年平均最低气温上升趋势最显著.受热岛效应的影响,年平均最低气温的上升速率远大于年平均最高气温.除夏季平均最高气温呈缓慢下降趋势,其他季节均呈上升趋势,且冬季平均最低气温上升趋势最为明显.平均最低气温的快速上升使得气温日较差呈减小趋势.  相似文献   

10.
利用紫金县1961-2009年历年日平均气温、平均最高(最低)气温、降水量、蒸发量资料,分析近50年来不同时间尺度的气候变化特征.结果表明:年平均气温、年平均最高和最低气温在波动中呈上升趋势,其中年平均最低气温上升趋势最为明显;四季增温的程度为冬季>秋季>春季>夏季.降水量在波动中呈现上升的趋势.蒸发年代际变化总体上呈...  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

17.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

18.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

19.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号