首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
为了对黄山地区云凝结核(Cloud Condensation Nuclei,CCN)进行闭合研究,2014年6月30日至7月28日在黄山光明顶对大气气溶胶理化性质和CCN数浓度进行观测,分析了气溶胶化学组分、谱分布以及CCN数浓度随时间变化的特征,通过κ-Köhler理论并使用离子配对法计算得到CCN数浓度与观测得到的CCN数浓度进行对比。结果表明:计算与观测的CCN闭合结果较好,低过饱和度CCN闭合结果好于高过饱和度,过饱和度较低时低估了CCN数浓度,而过饱和度较高时则高估了CCN数浓度,由此说明气溶胶的化学组分数据对预测CCN数浓度至关重要,同时说明该方法可以实现CCN的闭合。考虑到40%水溶性有机碳(Water Soluble Organic Carbon,WSOC)对气溶胶粒子吸湿性影响,在较低过饱和度CCN闭合结果较好,但影响效果并不显著,尤其是在拟合结果相对较差的高过饱和度下基本没有影响。因此,气溶胶粒子中水溶性无机组分对CCN活化有重要影响,而含量较多、化学组分复杂并且吸湿性不确定的WSOC对CCN活化影响较为有限,这与一些研究得出无机组分对于气溶胶吸湿性的影响比具有复杂特征的有机组分更重要的结论相符合。  相似文献   

2.
The effect of clouds on aerosol growth in the rural atmosphere   总被引:1,自引:0,他引:1  
Measurements of accumulation mode aerosol in the atmospheric boundary layer under cloudy and cloud-free conditions, and in the lower free troposphere under cloud-free conditions, were conducted over the rural northwest of England. Normalised size distributions in the cloud-free boundary layer (CFBL) and the cloud-free free troposphere (CFFT) exhibited almost identical spectral similarities with both size distributions possessing a concentration peak mode-radius of ≈0.05 μm or less. By comparison, aerosol distributions observed in cloudy air exhibited a distinctive log-normal distribution with mode-radii occurring at ≈0.1 μm concomitant with a local minimum at ≈0.05 μm. The consistent and noticeable difference in spectral features observed between cloudy and cloud-free conditions suggest that a greater amount of gas-to-particle conversion occurs on cloudy days, presumably through in-cloud aqueous phase oxidation processes, leading to larger sized accumulation mode particles. Apart from the distinct difference between cloudy and cloud-free aerosol spectra on cloudy days, aerosol concentration and mass were observed to be significantly enhanced above that of the ambient background in the vicinity of clouds. Volatility analysis during one case of cloud processing indicated an increase in the relative contribution of aerosol mass volatile at temperatures characteristic of sulphuric acid, along with a smaller fraction of more volatile material (possibly nitric acid and/or organic aerosol). Growth-law analysis of possible growth mechanisms point to aqueous phase oxidation of aerosol precursors in cloud droplets as being the only feasible mechanism capable of producing the observed growth. The effect of cloud processing is to alter the cloud condensation nuclei (CCN) supersaturation spectrum in a manner which increases the availability of CCN at lower cloud supersaturations.  相似文献   

3.
In this work we propose and test a method to calculate cloud condensation nuclei (CCN) spectra based on aerosol number size distributions and hygroscopic growth factors. Sensitivity studies show that this method can be used in a wide variety of conditions except when the aerosol consist mainly of organic compounds. One crucial step in the calculations, estimating soluble ions in an aerosol particle based on hygroscopic growth factors, is tested in an internal hygroscopic consistency study. The results show that during the second Aerosol Characterization Experiment (ACE-2) the number concentration of inorganic ions analyzed in impactor samples could be reproduced from measured growth factors within the measurement uncertainties at the measurement site in Sagres, Portugal.
CCN spectra were calculated based on data from the ACE-2 field experiment at the Sagres site. The calculations overestimate measured CCN spectra on average by approximately 30%, which is comparable to the uncertainties in measurements and calculations at supersaturations below 0.5%. The calculated CCN spectra were averaged over time periods when Sagres received clean air masses and air masses influenced by aged and recent pollution. Pollution outbreaks enhance the CCN concentrations at supersaturations near 0.2% by a factor of 3 (aged pollution) to 5 (recent pollution) compared to the clean marine background concentrations. In polluted air masses, the shape of the CCN spectra changes. The clean spectra can be approximated by a power function, whereas the polluted spectra are better approximated by an error function.  相似文献   

4.
A model of the aqueous phase processing of an aerosol population undergoing multiple cycling through a stratocumulus (Sc) cloud layer is presented. Results indicate that a significant modification of the aerosol properties is achieved following the first cycle through cloud. In a polluted atmosphere, further modification in subsequent cycles is seen to be hydrogen peroxide limited unless there is a flux of ammonia entering the system through cloud base (CB). The modification of the aerosol population is seen to have little effect on the microphysics (specifically the cloud droplet concentration and effective radius) of the processing cloud. However, it enables processed aerosols to subsequently act as efficient cloud condensation nuclei (CCN) in less vigorous clouds (as a result of reducing the critical supersaturation required to activate them). The effects of variations in the internal mixture of soluble components of aerosols on the microphysics of clouds forming on them are also investigated using the cloud model. A (K2) parameterisation of the effects of variations in internally mixed nitrate loadings on the cloud droplet number concentration is presented. The effects of applying this K2 correction to the droplet number (derived from a parameterisation based on sulphate) for the presence of nitrate in aerosol have been investigated using the HadAM3 version of the Hadley Centre General Circulation Model (GCM). The effect on global annual mean simulations of the indirect forcing and effective radius is small, but more pronounced regionally. Suggestions (based on model results and observations) for parameterising the size distribution and in-cloud growth of aerosols for use in GCMs are presented.  相似文献   

5.
The first measurements of cloud condensation nuclei(CCN) at five supersaturations were carried out onboard the research vessel "Sagar Kanya"(cruise SK-296) from the south to the head-bay of the Bay of Bengal as part of the Continental Tropical Convergence Zone(CTCZ) Project during the Indian summer monsoon of 2012. In this paper, we assess the diurnal variation in CCN distributions at supersaturations from 0.2% to 1%(in steps of 0.2%) and the power-law fit at supersaturation of 1%.The diurnal pattern shows peaks in CCN concentration(NCCN) at supersaturations from 0.2% to 1% between 0600 and 0700 LST(local standard time, UTC+0530), with relatively low concentrations between 1200 and 1400 LST, followed by a peak at around 1800 LST. The power-law fit for the CCN distribution at different supersaturation levels relates the empirical exponent(k) of supersaturation(%) and the NCCNat a supersaturation of 1%. The NCCNat a supersaturation of 0.4% is observed to vary from 702 cm~(-3) to 1289 cm~(-3), with a mean of 961 ± 161 cm~(-3)(95% confidence interval), representing the CCN activity of marine air masses. Whereas, the mean NCCNof 1628 ± 193 cm~(-3) at a supersaturation of 1% is higher than anticipated for the marine background. When the number of CCN spectra is 1293, the value of k is 0.57 ± 0.03(99% confidence interval)and its probability distribution shows cumulative counts significant at k ≈ 0.55 ± 0.25. The results are found to be better at representing the features of the marine environment(103 cm~(-3) and k ≈ 0.5) and useful for validating CCN closure studies for Indian sea regions.  相似文献   

6.
利用2009年11—12月在天津武清气象局测量的云凝结核(CCN:Cloud Condensation Nuclei)浓度资料以及气溶胶数谱分布的观测资料,分析了武清地区在不同过饱和度(0.1%~1.0%)下云凝结核浓度及活化率的变化特征。结果表明:武清地区冬季CCN数浓度变化范围很大,过饱和度1%时,浓度变化范围为4000~32000cm-3,且浓度受风速影响明显,风速2级以下CCN数浓度很高,过饱和度1%时,其平均浓度可达16000cm-3,但对于4级风速以上CCN平均浓度为4000cm-3左右;在过饱和度0.1%~0.4%间CCN浓度变化较大,过饱和度每增加0.1%,CCN浓度增加值平均约为过饱和度0.4%~1.0%间浓度增量的5倍。低过饱和度(0.1%、0.2%)下,活化率受风速影响明显,1级风速下的CCN活化率约为4级风速下的3倍,但在过饱和度1%时活化率则相差不大。CCN浓度的日变化呈双峰型,峰值时刻为北京时间08:00和18:00左右,活化率的日变化则呈双谷型,这主要是受局地排放影响的结果。利用指数函数拟合各风速下CCN浓度过饱和度谱,表明该地谱型为典型的大陆型。  相似文献   

7.
Surface measurements of cloud condensation nuclei (CCN) number concentration (cm−3) are presented for unmodified marine air and for polluted air at Mace Head, for the years 1994 and 1995. The CCN number concentration active at 0.5% supersaturation is found to be approximately log-normal for marine and polluted air at the site. Values of geometric mean, median and arithmetic mean of CCN number concentration (cm−3) for marine air are in the range 124–135, 140–150 and 130–157 for the two years of data. Analysis of CCN number concentration for high wind speed, U, up to 20 m s−1 show enhanced CCN production for U in excess of about 10–12 m s−1. Approximately 7% increase in CCN per 1 m s−1 increase in wind speed is found, up to 17 m s−1. A relationship of the form log10CCN=a+bU is obtained for the periods March 1994 and January, February 1995 for marine air yielding values a of 1.70; 1.90 and b of 0.035 for both periods.  相似文献   

8.
气溶胶的时空分布及其核化成云的转化过程是云降水物理研究的重点,也是气候变化中气溶胶间接效应关注的热点问题。利用2013~2014年期间在华北中部山西地区开展的9架次夏季晴天和积云天气情况下的气溶胶、云凝结核(CCN)及云滴数浓度观测资料,分析研究了气溶胶的垂直分布、谱分布、来源特征及其与云凝结核、云滴数浓度的转化关系。研究结果表明,大气边界层逆温层结对气溶胶、CCN垂直分布有重要影响,不同天气条件下气溶胶谱型在低层差异较大而高层基本一致;垂直方向上CCN数浓度与气溶胶数浓度有较好的相关性,过饱和度0.3%条件下CCN比率(云凝结核/凝结核)与气溶胶有效直径呈线性关系;积云云下气溶胶与云滴的线性拟合方程为y=1.3x?616.3,拟合相关系数为0.96,气溶胶转化为云滴的比率可达到47%。在过饱和度0.3%条件下,云下CCN与云滴的线性拟合方程为y=1.6x?473.8,拟合相关系数也为0.96,CCN转化为云滴的比率可达到69%。  相似文献   

9.
This study performed a three-dimensional regional-scale simulation of aerosol and cloud fields using a meso-scale non-hydrostatic model with a bin-based cloud microphysics. The representation of aerosols in the model has been improved to account for more realistic multi-modal size distribution and multiple chemical compositions. Two case studies for shallow stratocumulus over Northeast Asia in March 2005 were conducted with different aerosol conditions to evaluate model performance. Improved condensation nuclei (CN) and cloud condensation nuclei (CCN) are attributable to the newly constructed aerosol size distribution. The simulated results of cloud microphysical properties (cloud droplet effective radius, liquid water path, and optical thickness) with improved CN/CCN number are close to the retrievals from satellite-based observation. The effects of aerosol on the microphysical properties of shallow stratocumulus are investigated by model simulation, in terms of columnar aerosol number concentration. Enhanced aerosol number concentration results in increased liquid water path in humid case, but invariant liquid water path in dry case primarily due to precipitation occurrence. The changes of cloud microphysical properties are more predominant for small aerosol burden than for large aerosol burden with the retarded changes in cloud mass and size due to inactive condensation and collision-coalescence processes. Quantitative evaluation of sensitivity factor between aerosol and cloud microphysical properties indicates a strong aerosol-cloud interaction in Northeast Asian region.  相似文献   

10.
海盐气溶胶和硫酸盐气溶胶在云微物理过程中的作用   总被引:14,自引:2,他引:14       下载免费PDF全文
利用大气气溶胶和云分档模式研究海盐气溶胶和硫酸盐气溶胶在云微物理过程中的作用, 计算结果表明:云中液态水含量随高度的分布并不随海盐、硫酸盐的数目以及云团上升速度的变化而变化; 随着云滴数目的增加, 云滴的有效半径会减小; 硫酸盐对云滴数目影响起主导作用, 海盐在水汽相对充足情况下增加了云滴数目, 在水汽相对不足的情况下减少了云滴数目; 硫酸盐粒子浓度特别强的情况下 (人类活动污染比较严重时), 如果水汽相对不足, 云滴数目会明显小于硫酸盐粒子浓度; 而海盐粒子的存在, 加剧了水汽的供应不足, 从而可以在很大程度上进一步降低云滴数目。也就是说, 在有些情况下, 如果不考虑海盐气溶胶的作用, 硫酸盐气溶胶对云特性的影响会被过高估计。  相似文献   

11.
Ground-based aerosol instrumentation covering particle size diameters from 25 nm to 32 µm was deployed to determine aerosol concentration and cloud condensation nuclei (CCN)-activation properties at water vapor supersaturations in the range of S = 0.20–1.50 % in the remote Brazilian northeast semi-arid region (NEB) in coastal (maritime) and continental (inland) regimes. The instruments measured aerosol number concentration and activation spectra for CCN and revealed that aerosol properties are sensitive with respect to the sources as a function of the local wind circulation system. The observations show that coastal aerosol total number concentrations are above 3,000 cm?3 on average, exhibiting concentration peaks depending on the time of the day in a consistent daily pattern. The variation on aerosol concentration has also influences on the fraction of particles active as CCN. At 1.0 % water vapor supersaturation, the fraction can reach as high as 80 %. Inland aerosol total concentrations were about 1,800–1,900 cm?3 and did not show much diurnal variation. The fraction of particles active as CCN observed inland depend on the history of the air masses, and was much higher when air masses were originated over the sea. It was found that (NH4)2SO4 and NaCl are the major soluble inorganic fraction of the aerosols at the coast. The major fraction of NaCl was present in the coarse mode, while ammonium sulfate dominates the inorganic fraction at the submicron range, with about 10 % of the total aerosol mass at 0.32 µm. Inorganic compounds are almost absent in particles with sizes around 0.1 μm. The study suggests that the air masses with high concentration of CCN originate at the sea. The feasible explanation lies in the fact that the NEB’s beaches have a particular morphology that produces a wide surf zone and creates a large load of aerosols when combined with strong and permanent winds of the region.  相似文献   

12.
This study investigates aerosol indirect effects on the development of heavy rainfall near Seoul, South Korea, on 12 July 2006, focusing on precipitation amount. The impact of the aerosol concentration on simulated precipitation is evaluated by varying the initial cloud condensation nuclei (CCN) number concentration in the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) microphysics scheme. The simulations are performed under clean, semi-polluted, and polluted conditions. Detailed analysis of the physical processes that are responsible for surface precipitation, including moisture and cloud microphysical budgets shows enhanced ice-phase processes to be the primary driver of increased surface precipitation under the semi-polluted condition. Under the polluted condition, suppressed auto-conversion and the enhanced evaporation of rain cause surface precipitation to decrease. To investigate the role of environmental conditions on precipitation response under different aerosol number concentrations, a set of sensitivity experiments are conducted with a 5?% decrease in relative humidity at the initial time, relative to the base simulations. Results show ice-phase processes having small sensitivity to CCN number concentration, compared with the base simulations. Surface precipitation responds differently to CCN number concentration under the lower humidity initial condition, being greatest under the clean condition, followed by the semi-polluted and polluted conditions.  相似文献   

13.
Aircraft measurements of cloud condensation nuclei (CCN) during the Large-Scale Biosphere–Atmosphere Experiment in Amazonia (LBA) were conducted over the Southwestern Amazon region in September–October 2002, to emphasize the dry-to-wet transition season. The CCN concentrations were measured for values within the range 0.1–1.0% of supersaturation. The CCN concentration inside the boundary layer revealed a general decreasing trend during the transition from the end of the dry season to the onset of the wet season. Clean and polluted areas showed large differences. The differences were not so strong at high levels in the troposphere and there was evidence supporting the semi-direct aerosol effect in suppressing convection through the evaporation of clouds by aerosol absorption. The measurements also showed a diurnal cycle following biomass burning activity. Although biomass burning was the most important source of CCN, it was seen as a source of relatively efficient CCN, since the increase was significant only at high supersaturations.  相似文献   

14.
Modeling Marine Stratocumulus with a Detailed Microphysical Scheme   总被引:1,自引:0,他引:1  
A one-dimensional 3rd-order turbulence closure model with size-resolved microphysics and radiative transfer has been developed for investigating aerosol and cloud interactions of the stratocumulus-topped marine boundary layer. A new method is presented for coupling between the dynamical model and the mierophysical model. This scheme allows the liquid water related correlations to be directly calculated rather than parameterized. On 21 April 2001, a marine stratocumulus was observed by the Caesar aircraft over the west Pacific Rim south of Japan during the 2001 APEX/ACE-Asia field measurements. This cloud is simulated by the model we present here. The model results show that the general features of the stratocumulus-topped marine boundary layer predicted by the model are in agreement with the measurements. A new onboard cloud condensation nuclei (CCN) counter provides not only total CCN number concentration (as the traditional CCN counters do at a certain supersaturation) but also the CCN size distribution information. Using these CCN data, model responses to different CCN initial concentrations are examined. The model results are consistent with both observations and expectations.The numerical results show that the cloud microphysieal properties are changed fundamentally by different initial CCN concentrations but the cloud liquid water content does not differ significantly. Different initial CCN loadings have large impacts on the evolution of cloud microstructure and radiation transfer while they have a modest effect on thermodynamics. Increased CCN concentration leads to significant decrease of cloud effective radius.  相似文献   

15.
By analyzing airborne observations over North China from 30 flights during spring and autumn of 2005-2007, characteristics of the vertical distributions of aerosol and cloud condensation nuclei (CCN) at 0.3% supersaturation in various locations of North China are investigated. The measurement samplings were conducted over different surfaces such as plains, plateau, and sea. The results show that the number concentration of accumulation mode aerosols was greater in autumn than in spring, but the reverse is true for CCN. This means that more aerosols with diameters smaller than 100 nm could be activated as CCN in spring, and this could induce higher aerosol activation efficiency. The aerosol activation efficiency over the plains near the Taihang Mountain was greater in spring than in autumn, and it was greater over sea than over land. The aerosol activation efficiency above the boundary layer over the Bashang Plateau was very low. Based on a fit of the negative exponential vertical distributions of aerosol and CCN, a spatial parameterization model of aerosol and CCN as well as aerosol activation efficiency over North China was proposed. The results show that aerosol activation efficiency was not clearly dependent on altitude because it was mainly affected by regional physical and chemical characteristics of aerosols and the ambient atmospheric conditions. The mean aerosol activation efficiency is 0.66, with values of 0.70 and 0.53 in spring and autumn,respectively.  相似文献   

16.
Calibration of a photoelectric cloud condensation nucleus counter   总被引:1,自引:0,他引:1  
Calibrations were performed for the photodetector output of a static thermal-gradient diffusion chamber by comparing the detector signals with visual counts of the number of droplets developing in the chamber. The calibrations cover the supersaturation range 0.3% to 1 %. For each supersaturation, the CCN concentration was found to be proportional to the detector output. During the activation and growth of droplets, the time of peak signal corresponds well to the time at which droplet count is a maximum within the sample volume. The use of an average output signal over a period bracketing the mean position of the peak is a slightly better measure of droplet concentrations than the peak value. The calibration equations here derived are specific to the CCN counter used to obtain the data. Also, the calibration constants can be expected to be dependent on the type of aerosol which serve as CCN; the limited data so for available show only weak variations in the constants.  相似文献   

17.
2014年8月15日,山西省人工降雨防雹办公室在山西忻州开展了气溶胶和浅积云的飞机观测,本文利用机载云物理资料,详细分析了华北地区气溶胶、云凝结核(CCN)和浅积云微物理特性及其相互影响。主要结论有:(1)此次过程的边界层高度约为3600 m,不同层结情况下,0.1~3 μm尺度范围内的气溶胶粒子浓度Na、有效直径Da和CCN数浓度的垂直廓线明显不同,近地面Na可达2500 cm?3。(2)CCN的主要来源为积聚模态、爱根模态或者核模态的气溶胶颗粒,0.2%过饱和度下,气溶胶活化率(AR)在各高度层的结果变化不大;0.4%过饱和度下,AR随着高度增加而降低。(3)后向轨迹模式分析表明,2 km以下的气溶胶主要来自于当地城市排放,由细颗粒污染物组成;2 km以上的气溶胶主要来源于中国西北和蒙古地区的沙漠,由亚微米沙尘组成,溶解度相对较低,可作为潜在的冰核。(4)本文细致分析了两块相邻浅积云(Cu-1和Cu-2)的云物理特性。Cu-1云底高度约4500 m,云厚约600 m,云体松散,夹卷较多;云中液态含水量(LWC)基本保持在0.5 g m?3,云粒子浓度Nc平均值为278.3 cm?3,云滴有效直径Dc整体在15 μm以内;毛毛雨滴粒子浓度最大值为0.002 cm?3,云中几乎无降水粒子;粒子谱宽随着高度增加而增大,主要集中在30 μm以内。Cu-2云底高度约3900 m,云厚约1200 m,云体密实;云中过冷水丰沛,LWC有多个超过1 g m?3的区域,云顶附近出现冰晶,云中粒子从凝结增长状态直接进入到混合相态;积云内部粒子水平分布不均,同一高度Nc相差较大,最大可达1240 cm?3。Dc随着高度增加而增大;粒子谱宽随着高度增加而拓展,最大可达1100 μm,谱型由单峰向多峰转变;降水粒子和冰晶图像大多为霰粒子、针状和板状。  相似文献   

18.
Measurements show that 20–60% of the carbon mass present in fine atmospheric particulate matter consists of water soluble organic compounds (WSOC). However, only 5–20% of this WSOC has been identified, mainly as dicarboxylic acids. Because of their high solubility in water, multifunctional secondary compounds derived from the gas-phase oxidation of volatile organic compounds (VOC) are suspected to be key contributors to the WSOC. To test this assumption, an estimate of aqueous uptake of secondary VOC was included in a highly detailed gas-phase mechanism which treats explicitly the formation of the secondary VOC from a set of representative primary species. Simulations were conducted for 2 scenarios, representing typical rural and urban areas. It was observed that the uptake of secondary VOC can lead to WSOC mass concentrations in the range of a few C m–3, in fairly good agreement with typical WSOC mass concentrations measured. Speciation of WSOC was found to be mainly as tri- or higher multifunctional hydroxy-carbonyl species and hydroxy-hydroperoxide-carbonyl species, in urban and rural environments, respectively. However, it was also found that taking into account only the absorption of secondary VOC does not bring the carboxylic acids mass concentration in agreement with measurements. An attempt was made to explain this discrepancy by introducing chemistry occurring within deliquescent aerosols.  相似文献   

19.
Summary Atmospheric CCN-humidity spectra (describing the CCN-number concentration as function of supersaturation) are derived as the integral over given particle size distributions. In that concept the finite boundary, representing the limiting activated particle size, results from the critical values of the Köhler-curve. As utilization of this general outcome different representative aerosol size distributions of the power law type as well as the log-normal type are chosen for case studies which are compared to empirical results. The dependency on temperature of the limiting activated particle size is shown to provide a non-negligible influence on the number of activated particles.With 3 Figures  相似文献   

20.
2016年11月13日在北京地区上空存在持续稳定的层状云天气背景下,利用飞机开展气溶胶粒径谱、化学组成、云滴谱等参量的垂直观测,研究该个例云底气溶胶的活化能力。结果表明:探测期间北京地区为轻度污染天气,地面气溶胶浓度(0.11~3 μm)达到4600 cm-3。云层高度为800~1200 m,云底气溶胶数浓度相对于近地面大幅度降低,有效粒径显著增大(0.3~0.6 μm)。同时,近地面气溶胶中疏水性的一次有机气溶胶贡献显著,而云底气溶胶中一次有机气溶胶的贡献大幅降低,无机组分和二次有机气溶胶的贡献明显增大,造成吸湿性参数κ由0.25(地面)增大至0.32(云底)。云中气溶胶和云滴的谱分布衔接较好,且两者的数浓度之和与云底气溶胶浓度一致,可分别代表未活化和已活化的粒子。基于云底气溶胶粒径谱和吸湿性参数计算得到不同过饱和比下云凝结核的活化率,通过与云中观测结果对比,反推得到云底过饱和度约为0.048%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号