首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Aerosol particles are of particular importance because of their impacts on cloud development and precipitation processes over land and ocean. Aerosol properties as well as meteorological observations from the Department of Energy Atmospheric Radiation Measurement(ARM) platform situated in the Southern Great Plains(SGP) are utilized in this study to illustrate the dependence of continental cloud condensation nuclei(CCN) number concentration(NCCN) on aerosol type and transport pathways. ARM-SGP observations from the 2011 Midlatitude Continental Convective Clouds Experiment field campaign are presented in this study and compared with our previous work during the 2009–10 Clouds, Aerosol, and Precipitation in the Marine Boundary Layer field campaign over the current ARM Eastern North Atlantic site. Northerly winds over the SGP reflect clean, continental conditions with aerosol scattering coefficient(σ_(sp)) values less than 20 Mm~(-1) and NCCNvalues less than 100 cm~(-3). However, southerly winds over the SGP are responsible for the observed moderate to high correlation(R)among aerosol loading(σ_(sp) 60 Mm~(-1)) and NCCN, carbonaceous chemical species(biomass burning smoke), and precipitable water vapor. This suggests a common transport mechanism for smoke aerosols and moisture via the Gulf of Mexico,indicating a strong dependence on air mass type. NASA MERRA~(-2) reanalysis aerosol and chemical data are moderately to highly correlated with surface ARM-SGP data, suggesting that this facility can represent surface aerosol conditions in the SGP, especially during strong aerosol loading events that transport via the Gulf of Mexico. Future long-term investigations will help to understand the seasonal influences of air masses on aerosol, CCN, and cloud properties over land in comparison to over ocean.  相似文献   

2.
气溶胶的时空分布及其核化成云的转化过程是云降水物理研究的重点,也是气候变化中气溶胶间接效应关注的热点问题。利用2013~2014年期间在华北中部山西地区开展的9架次夏季晴天和积云天气情况下的气溶胶、云凝结核(CCN)及云滴数浓度观测资料,分析研究了气溶胶的垂直分布、谱分布、来源特征及其与云凝结核、云滴数浓度的转化关系。研究结果表明,大气边界层逆温层结对气溶胶、CCN垂直分布有重要影响,不同天气条件下气溶胶谱型在低层差异较大而高层基本一致;垂直方向上CCN数浓度与气溶胶数浓度有较好的相关性,过饱和度0.3%条件下CCN比率(云凝结核/凝结核)与气溶胶有效直径呈线性关系;积云云下气溶胶与云滴的线性拟合方程为y=1.3x?616.3,拟合相关系数为0.96,气溶胶转化为云滴的比率可达到47%。在过饱和度0.3%条件下,云下CCN与云滴的线性拟合方程为y=1.6x?473.8,拟合相关系数也为0.96,CCN转化为云滴的比率可达到69%。  相似文献   

3.
Africa is one of the sources of biomass burning emissions. It is estimated that about 6 million tons of fuel per day is consumed in the southern hemisphere. Biomass burning has an important contribution on aerosol particle concentrations in the atmosphere. Efforts have been made to conduct research in Gaborone to monitor the concentration of atmospheric aerosol particles. These studies were mainly confined to measurement of concentration of aerosol particles and establishing a relation with determinants such as carbon dioxide concentration, biomass burning, and precipitation among others. However, very little seems to have been done in relating the empirical data to levels of aerosol concentrations through a mathematical model. In this paper an objective criterion of classifying levels of aerosol concentrations in terms of their severity is provided. A mathematical model for severity levels is built. Furthermore, two indices, namely, an index of dispersion when applied to the observed annual data indicated that intensity of atmospheric aerosol are on increase in the city of Gaborone, Botswana, and an index of drift which establishes that aerosol severity states showed larger drift during the year 2006–2007 than in the year 2007–2008.  相似文献   

4.
In this work, the influence of South Asian biomass burning emissions on O3 and PM2.5 concentrations over the Tibetan Plateau (TP) is investigated by using the regional climate chemistry transport model WRF-Chem. The simulation is validated by comparing meteorological fields and pollutant concentrations against in situ observations and gridded datasets, providing a clear perspective on the spatiotemporal variations of O3 and PM2.5 concentrations across the Indian subcontinent, including the Tibetan Plateau. Further sensitivity simulations and analyses show that emissions from South Asian biomass burning mainly affect local O3 concentrations. For example, contribution ratios were up to 20% in the Indo-Gangetic Plain during the pre-monsoon season but below 1% over the TP throughout the year 2016. In contrast, South Asian biomass burning emissions contributed more than 60% of PM2.5 concentration over the TP during the pre-monsoon season via significant contribution of primary PM2.5 components (black carbon and organic carbon) in western India that were lofted to the TP by westerly winds. Therefore, it is suggested that cutting emissions from South Asian biomass burning is necessary to alleviate aerosol pollution over the TP, especially during the pre-monsoon season.  相似文献   

5.
Measurements of total ozone column and solar UV radiation under different atmospheric conditions are needed to define variations of both UV and ozone and to study the impact of ozone depletion at the Earth’s surface. In this study, spectral and broadband measurements of UV-B irradiance were obtained along with total ozone observations and aerosol optical depth measurements in the tropical urban region of Hyderabad, south India. We specifically used an Ultra-Violet Multifilter Rotating Shadow band Radiometer (UVMFR-SR), to measure UV irradiance in time and space. To assess the aerosol and O3 effects on ground-reaching UV irradiance, we used measurements from a Microtops II sun photometer in addition to the Tropospheric Ultraviolet Visible radiation (TUV) model. We also assessed the Defense Meteorological Satellite Program – Operational Line Scanner (DMSP-OLS) night time satellite data for inferring biomass burning fires during the study period. Results clearly suggested a negative correlation between the DMSP-OLS satellite derived fire count data and UVMFR-SR data suggesting that aerosols from biomass burning are directly attenuating UV irradiance in the study region. Also, correlation analysis between UV index and ozone measurements from sun photometer and TOMS-Ozone Mapping Instrument (OMI) indicated a clear decrease in ground reaching UV-B irradiance during higher ozone conditions. The higher levels are attributed to photochemical production of O3 during the oxidation of trace gases emitted from biomass burning. Results also suggested a relatively high attenuation in UV irradiance (~6% higher) from smoke particles than dust. We also found a relatively good agreement between the modeled (TUV) and measured UV irradiance spectra for different atmospheric conditions. Our results highlight the factors affecting UV irradiance in a tropical urban environment, south India.  相似文献   

6.
Every year during winter months (December?CJanuary) fog formation over Indo-Gangetic plains (IGP) of Indian region is believed to create numerous hazards. The present study addresses variations in aerosol optical properties, aerosol mass concentration and their impact on solar irradiance for pre-during-post fog conditions of December 2004 over IGP, India. Continuous measurements on aerosol optical depth (AOD), total aerosol mass concentration, black carbon (BC) aerosols, UVery and UVA were carried out for pre, during and post fog periods over study site of Allahabad, India, during December 2004 as a part of Aerosol Land Campaign-II conducted by Indian Space Research Organization (ISRO). High aerosol mass concentrations were observed during fog and post-fog periods. Accumulation mode particle loading was found to be high during pre-fog period and coarse mode particle loading was observed to be high during fog and post-fog periods. Considerable reduction in UVery and UVA irradiance was observed during fog period compared with pre and post-fog periods. Analysis of NOAA-HYSPLIT model runs suggested that enhanced biomass burning episodes down-wind to the study area increased the concentration of AOD and BC.  相似文献   

7.
高玮  屈文军 《山东气象》2018,38(4):81-92
研究了非洲地区大气气溶胶光学厚度(AOD)的时空变化及沙尘气溶胶越大西洋海区的传输。结果表明:1)源于撒哈拉沙漠的沙尘及其随赤道东风向西输送使得沙尘气溶胶成为非洲沙漠地区和紧邻的大西洋海区的主要气溶胶组分;AOD高值区和沙尘气溶胶光学厚度高值区在1—7月随赤道辐合带北移同步向北移动,而在8—12月则向南回撤。2)刚果盆地大气气溶胶主要为热带雨林和稀树草原排放的有机碳(OC)和黑碳(BC)气溶胶;其中与生物质燃烧源排放有关的OC、BC高值主要集中在干季(6—9月)的后半段(8—9月);而生物源OC排放全年连续,其排放峰值出现于雨季开始时;生物质燃烧排放高值期与生物源排放高值期前后相继,形成干季(尤其是后半段)时期的OC、BC光学厚度高值。3)亚马逊河入海口地区主要气溶胶组分为海盐气溶胶,9—11月该区风力输送增强,风向由东南风转变为东风,海盐进入亚马逊河入海口处,形成AOD和海盐气溶胶光学厚度高值区。4)撒哈拉沙漠沙尘气溶胶向大西洋传输的偏北月份为7—9月、偏南月份为1—3月;2000—2016年海区沙尘气溶胶的传输路径存在向南移动的变化趋势,与同期亚速尔高压的增强和沙尘传输路径以北北风分量的增强以及赤道辐合带的移动一致。上述研究结果揭示了利用大气气溶胶时空变化特征反映区域大气环流和气候变化的可能性。  相似文献   

8.
The manual harvest of sugar cane requires the burning of its foliage. This burning has strongly increased in Brazil after the National Alcohol Program was started which substituted automobile gasoline engines for alcohol engines. Presently, the source strength per unit area of this rural pollution is comparable to the well-known biomass burning source in Amazonia. The observed concentrations of CO and O3 in the rural area of the state of São Paulo during the 1988 burning season were twice as large as those reported from an aircraft experiment of 1985 for biomass burnings of the tropical rain forest. Results are reported from airplane measurements and from three fixed ground stations. Mixing ratios of ozone and carbon monoxide in the height range below 6 km are normally less than 40 and 100 ppbv, (parts per billion by volume), respectively, in the absence of burnings. A strong O3 and CO layer was observed during the burning period with peak concentrations of 80 ppbv of ozone and 580 ppbv of CO at about 2 km. The concentrations of CH4 and CO2 were also large, 1756 ppbv and 409 ppmv, respectively, at 1500 m. During the dry season period of the experiment, the ground based O3 average diurnal variations obtained at the rural sites were practically identical to the typical urban variation observed at São José dos Campos, with daytime ozone values between 45 and 60 ppbv. A second three-day airplane excursion to the surgar cane fields in the wet season of 1989 has produces results to be contrasted with the dry (burning) season of 1988 and 1989. Carbon monoxide concentrations were below 100 ppbv at all heights and ozone concentrations were around 30–40 ppbv. The maximum daytime concentrations at the ground station Bauru was 25 ppbv of O3, and at Jaboticabal it was 35 ppbv of O3, only one half of what was observed in the dry season.Universidade Estadual de São Paulo.  相似文献   

9.
The main objective of this study is to investigate the chemical characteristics of biomass burning aerosol and its impact on regional air quality during an agricultural waste burning period in early summer in the rural areas of Korea. A 12-h integrated intensive sampling of biomass burning aerosol in the fine and coarse modes was conducted on 2–20 June 2003 in Gwangju, Korea. The collected samples were analyzed for concentrations of mass, ionic, elemental, and carbonaceous species. Average concentrations of fine and coarse mass were measured to be 67.9 and 18.7 μg m− 3 during the biomass burning period, 41.9 and 18.8 μg m− 3 during the haze period, and 35.6 and 13.3 μg m− 3 during the normal period, respectively. An exceptionally high PM2.5 concentration of 110.3 μg m− 3 with a PM2.5/PM10 ratio of 0.79 was observed on 6 June 2003 during the biomass burning period. The potassium ratio method was used to identify biomass burning samples. The average ratio of potassium in the fine mode to the coarse mode (FK/CK) was 23.8 during the biomass burning period, 6.0 during the haze period, and 4.7 during the normal period, respectively. A FK/CK ratio above 9.2 was considered a criterion for biomass burning event in this study. Particulate matter from the open field burning of agricultural waste has an adverse impact on visibility, human health, and regional air quality.  相似文献   

10.
During the 2nd Aerosol Characterization Experiment (ACE‐2), relationships between stratocumulus cloud properties and aerosols were examined. Here, the relevant measurements including the cloud condensation nuclei (CCN) activation spectrum, updraft velocity, cloud microphysical and aerosol properties are presented. It is shown that calculations of droplet concentration based on updraft velocity and the CCN activation spectrum are consistent with direct observations. Also discussed is an apparent disparity among measurements of the CCN activation spectrum, the accumulation mode size distribution, and the composition of the submicrometric aerosol. The observed consistency between CCN, updraft and cloud droplets is a necessary refinement; however, extended analyses of the ACE‐2 data set are needed to guide improvements in model simulations of the interaction between aerosols and cloud microphysics. In particular, there is need for an examination of aerosol size spectra and chemical composition measurements with a view towards validating droplet activation schemes which relate the aerosol and cloud dynamical properties to cloud albedo.  相似文献   

11.
刘颖  朱君 《气象科技》2022,50(6):878-884
利用青藏高原拉萨(Lhasa)和珠峰(QOMS_CAS)站点地基CE 318太阳光度计观测数据,研究了2012年4月2日至4月5日一次生物质燃烧输送对青藏高原气溶胶光学和辐射特性的影响;并结合卫星遥感产品以及后向轨迹模式分析了本次生物质燃烧输送的可能来源。结果表明:本次气溶胶污染期间Lhasa和QOMS_CAS站点的主要气溶胶类型变为生物质燃烧气溶胶,气溶胶粒子的消光性增大(气溶胶光学厚度(AOD)增大,Lhasa和QOMS_CAS站点AOD最大值分别为0.4和0.29),尺度减小(消光波长指数(EAE)>1.5),吸收性增大(吸收波长指数(AAE)>1.3),细模态粒子体积浓度增大,而细模态粒子峰值半径减小。气溶胶辐射强迫表明此次输送过程使得Lhasa和QOMS_CAS站点的气溶胶对大气顶和地表的降温作用增强,对大气的增温作用也增强。生物质燃烧输送的可能来源为南亚的印度东北部,尼泊尔与不丹地区。  相似文献   

12.
The North China Plain(NCP) is a region that experiences serious aerosol pollution. A number of studies have focused on aerosol pollution in urban areas in the NCP region; however, research on characterizing aerosols in rural NCP areas is comparatively limited. In this study, we deployed a TD-HR-AMS(thermodenuder high-resolution aerosol mass spectrometer) system at a rural site in the NCP region in summer 2013 to characterize the chemical compositions and volatility of submicron aerosols(PM_1). The average PM_1 mass concentration was 51.2 ± 48.0 μg m~(-3) and organic aerosol(OA) contributed most(35.4%) to PM_1. Positive matrix factorization(PMF) analysis of OA measurements identified four OA factors, including hydrocarbon-like OA(HOA, accounting for 18.4%), biomass burning OA(BBOA, 29.4%), lessoxidized oxygenated OA(LO-OOA, 30.8%) and more-oxidized oxygenated OA(MO-OOA, 21.4%). The volatility sequence of the OA factors was HOA BBOA LO-OOA MO-OOA, consistent with their oxygen-to-carbon(O:C)ratios. Additionally, the mean concentration of organonitrates(ON) was 1.48-3.39 μg m~(-3), contributing 8.1%–19% of OA based on cross validation of two estimation methods with the high-resolution time-of-flight aerosol mass spectrometer(HRToF-AMS) measurement. Correlation analysis shows that ON were more correlated with BBOA and black carbon emitted from biomass burning but poorly correlated with LO-OOA. Also, volatility analysis for ON further confirmed that particulate ON formation might be closely associated with primary emissions in rural NCP areas.  相似文献   

13.
南京不同天气和能见度下云凝结核的观测分析   总被引:3,自引:1,他引:2  
王惠  刘晓莉  安俊琳  丁伟 《气象科学》2016,36(6):800-809
利用美国DMT公司生产的云凝结核(Cloud Condensation Nuclei,CCN)计数器(DMTCCNC),对2013年4—12月南京地区CCN进行观测。对不同天气条件下CCN活化谱拟合,霾天C值最高,为13 085 cm-3,雨后C值降至8 054 cm-3,属于大陆性核谱。不同能见度条件下CCN活化谱特征有明显差异,南京地区不同程度霾天CCN数浓度均远高于轻雾天,浓雾时期CCN数浓度显著偏高。CCN数浓度受到气象要素和天气状况、气溶胶源排放等因素影响。南京地区气溶胶凝结核(Condensation Nuclei,CN)数浓度和CCN数浓度的拟合结果显示出较好的相关性。CCN数浓度值:冬季春季秋季夏季,春季CCN数浓度日变化有三峰趋势,夏季基本呈单峰型,秋季、冬季双峰特征突出。气溶胶源排放、环境气象条件和气溶胶理化特性均会影响CCN数浓度的季节变化。  相似文献   

14.
基于2016年冬季和2017年夏季在北京、2016年夏季在邢台的三次气溶胶外场观测实验,选取三次观测期间典型的新粒子生成事件,分析其对气溶胶吸湿和云凝结核(CCN)活化特性的影响。两地分别位于华北平原北部超大城市区域和中南部工业化区域,两地不同季节新粒子形成机制不同,对应的凝结汇、生长速率以及气溶胶化学组分也不同。北京站点新粒子生成事件的发生以有机物的生成主导,而邢台站点新粒子生成事件的发生则以硫酸盐和有机物的生成共同主导。邢台站点新粒子生成过程中气溶胶吸湿性及云凝结核活化能力明显强于北京站点,此特点在核模态尺度粒子中表现尤为明显。以上结果表明,在估算新粒子生成对CCN数浓度的影响时,应充分考虑气溶胶吸湿和活化特性的差异。  相似文献   

15.
Ground-based aerosol instrumentation covering particle size diameters from 25 nm to 32 µm was deployed to determine aerosol concentration and cloud condensation nuclei (CCN)-activation properties at water vapor supersaturations in the range of S = 0.20–1.50 % in the remote Brazilian northeast semi-arid region (NEB) in coastal (maritime) and continental (inland) regimes. The instruments measured aerosol number concentration and activation spectra for CCN and revealed that aerosol properties are sensitive with respect to the sources as a function of the local wind circulation system. The observations show that coastal aerosol total number concentrations are above 3,000 cm?3 on average, exhibiting concentration peaks depending on the time of the day in a consistent daily pattern. The variation on aerosol concentration has also influences on the fraction of particles active as CCN. At 1.0 % water vapor supersaturation, the fraction can reach as high as 80 %. Inland aerosol total concentrations were about 1,800–1,900 cm?3 and did not show much diurnal variation. The fraction of particles active as CCN observed inland depend on the history of the air masses, and was much higher when air masses were originated over the sea. It was found that (NH4)2SO4 and NaCl are the major soluble inorganic fraction of the aerosols at the coast. The major fraction of NaCl was present in the coarse mode, while ammonium sulfate dominates the inorganic fraction at the submicron range, with about 10 % of the total aerosol mass at 0.32 µm. Inorganic compounds are almost absent in particles with sizes around 0.1 μm. The study suggests that the air masses with high concentration of CCN originate at the sea. The feasible explanation lies in the fact that the NEB’s beaches have a particular morphology that produces a wide surf zone and creates a large load of aerosols when combined with strong and permanent winds of the region.  相似文献   

16.
Physical characterization of atmospheric aerosols was carried out using various equipments like Grimm's spectrophotometer, Aetholometer and Microtops-II at Bhubaneswar, a coastal city in the east coast of India. Meteorological parameters were recorded on-line with an automatic weather station, which showed weather relatively free from extreme events with high humidity during the period. The pre-monsoon months showed an increase in aerosol mass in the higher size ranges. The black carbon (BC) showed maximum values during winter which may be due to various anthropogenic activities like biomass burning and forest fire as well as dry conditions conducive to transport from far off places. The α values representing aerosol size distribution and β values showing the total aerosol concentration in vertical air column rose simultaneously in pre-monsoon months to attain maximum values during February–March 2008. The AOD was also correlated with PM-10 and BC concentrations.  相似文献   

17.
为了对黄山地区云凝结核(Cloud Condensation Nuclei,CCN)进行闭合研究,2014年6月30日至7月28日在黄山光明顶对大气气溶胶理化性质和CCN数浓度进行观测,分析了气溶胶化学组分、谱分布以及CCN数浓度随时间变化的特征,通过κ-Köhler理论并使用离子配对法计算得到CCN数浓度与观测得到的CCN数浓度进行对比。结果表明:计算与观测的CCN闭合结果较好,低过饱和度CCN闭合结果好于高过饱和度,过饱和度较低时低估了CCN数浓度,而过饱和度较高时则高估了CCN数浓度,由此说明气溶胶的化学组分数据对预测CCN数浓度至关重要,同时说明该方法可以实现CCN的闭合。考虑到40%水溶性有机碳(Water Soluble Organic Carbon,WSOC)对气溶胶粒子吸湿性影响,在较低过饱和度CCN闭合结果较好,但影响效果并不显著,尤其是在拟合结果相对较差的高过饱和度下基本没有影响。因此,气溶胶粒子中水溶性无机组分对CCN活化有重要影响,而含量较多、化学组分复杂并且吸湿性不确定的WSOC对CCN活化影响较为有限,这与一些研究得出无机组分对于气溶胶吸湿性的影响比具有复杂特征的有机组分更重要的结论相符合。  相似文献   

18.
《Atmospheric Research》2008,87(3-4):194-206
This work aims at determining the aerosol particle radii in the atmosphere of Athens. Such a work is carried out in Athens for the first time. For this purpose, solar spectral direct-beam irradiance measurements were used in the spectral range 310–575 nm. To estimate the particle radius from aerosol optical depth retrieval, a minimization technique was employed based on the golden-section search of the difference between experimental and theoretical values of the aerosol optical depth. The necessary Mie computations were performed based on the algorithm LVEC.In this study, the mean particle radius of a given distribution was calculated every 30 min during cloudless days in the period November 1996 to September 1997. The largest particles were observed in the summer and the smallest during winter. The result was verified by the increased values of the aerosol optical depth and the turbidity factors calculated in the summer. The differences in the diurnal variation from season to season are attributed to the prevailing wind regime, pollutant emission and sink rates in the atmosphere of Athens.  相似文献   

19.
There are many indicators that human activity may change climate conditions all around the globe through emissions of greenhouse gases. In addition, aerosol particles are emitted from various natural and anthropogenic sources. One important source of aerosols arises from biomass burning, particularly in low latitudes where shifting cultivation and land degradation lead to enhanced aerosol burden. In this study the counteracting effects of greenhouse gases and aerosols on African climate are compared using climate model experiments with fully interactive aerosols from different sources. The consideration of aerosol emissions induces a remarkable decrease in short-wave solar irradiation near the surface, especially in winter and autumn in tropical West Africa and the Congo Basin where biomass burning is mainly prevailing. This directly leads to a modification of the surface energy budget with reduced sensible heat fluxes. As a consequence, temperature decreases, compensating the strong warming signal due to enhanced trace gas concentrations. While precipitation in tropical Africa is less sensitive to the greenhouse warming, it tends to decrease, if the effect of aerosols from biomass burning is taken into account. This is partly due to the local impact of enhanced aerosol burden and partly to modifications of the large-scale monsoon circulation in the lower troposphere, usually lagging behind the season with maximum aerosol emissions. In the model equilibrium experiments, the greenhouse gas impact on temperature stands out from internal variability at various time scales from daily to decadaland the same holds for precipitation under the additional aerosol forcing. Greenhouse gases and aerosols exhibit an opposite effect on daily temperature extremes, resulting in an compensation of the individual responses under the combined forcing. In terms of precipitation, daily extreme events tend to be reduced under aerosol forcing, particularly over the tropical Atlantic and the Congo basin. These results suggest that the simulation of the multiple aerosol effects from anthropogenic sources represents an important factor in tropical climate change, hence, requiring more attention in climate modelling attempts.  相似文献   

20.
Due to increase in population and economic development, the mega-cities are facing increased haze events which are causing important effects on the regional environment and climate. In order to understand these effects, we require an in-depth knowledge of optical and physical properties of aerosols in intense haze conditions. In this paper an effort has been made to analyze the microphysical and optical properties of aerosols during intense haze event over mega-city of Lahore by using remote sensing data obtained from satellites (Terra/Aqua Moderate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)) and ground based instrument (AErosol RObotic NETwork (AERONET)) during 6-14 October 2013. The instantaneous highest value of Aerosol Optical Depth (AOD) is observed to be 3.70 on 9 October 2013 followed by 3.12 on 8 October 2013. The primary cause of such high values is large scale crop residue burning and urban-industrial emissions in the study region. AERONET observations show daily mean AOD of 2.36 which is eight times higher than the observed values on normal day. The observed fine mode volume concentration is more than 1.5 times greater than the coarse mode volume concentration on the high aerosol burden day. We also find high values (~0.95) of Single Scattering Albedo (SSA) on 9 October 2013. Scatter-plot between AOD (500 nm) and Angstrom exponent (440-870 nm) reveals that biomass burning/urban-industrial aerosols are the dominant aerosol type on the heavy aerosol loading day over Lahore. MODIS fire activity image suggests that the areas in the southeast of Lahore across the border with India are dominated by biomass burning activities. A Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model backward trajectory showed that the winds at 1000 m above the ground are responsible for transport from southeast region of biomass burning to Lahore. CALIPSO derived sub-types of aerosols with vertical profile taken on 10 October 2013 segregates the wide spread aerosol burden as smoke, polluted continental and dust aerosols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号