首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
新一代天气雷达灾害性天气监测能力分析及未来发展   总被引:20,自引:9,他引:11  
李柏  古庆同  李瑞义  曹俊武  王旭 《气象》2013,39(3):265-280
自20世纪90年代,我国开展大规模新一代天气雷达建设以来,已初步形成一个对大、中、小尺度灾害性天气监测的天气雷达业务网,并在防灾减灾中发挥了重要作用。本文利用我国新一代天气雷达网获得的大量实例资料分析了新一代天气雷达在实际应用中对大尺度天气系统如:冷锋、温带气旋、江淮切变线、低空急流、台风,中尺度天气系统诸如强对流天气系统的飑线、阵风锋、冰雹和雷暴高压,以及对我国产生重要影响的梅雨锋暴雨的监测能力。同时分析了现有天气雷达业务观测模式中的扫描策略、雷达适配参数设置以及雷达技术体制的特点与存在的问题。在不对现有雷达技术体制和结构做重大改变前提下,有针对性提出了:(1)改进现有业务观测模式:一是增加晴空模式和RHI垂直扫描模式增强对晴空回波以及垂直结构精细化探测能力;二是增设高山观测模式增强对边界层的探测覆盖能力。(2)改进雷达适配参数,采用相位编码技术和双PRF技术,把距离不模糊作为第一优先原则,来解决多普勒脉冲雷达体制下的距离与速度模糊问题。(3)增强雷达对弱回波探测能力,提高雷达的时空分辨率。(4)充分利用雷达网的组网技术,开展协同观测实现对大、中、小灾害性天气系统的时间与空间同步观测。(5)利用双偏振技术,进一步提高雷达定量估测降水的精度以及对相态的识别。并在上述5方面改进的基础上,提出了目前雷达技术升级改造的初步方案。展望了未来天气雷达技术的发展。  相似文献   

2.
该文根据有源相控阵天气雷达的体制特点,参考多普勒天气雷达测试定标方法,提出了一维扫描有源相控阵天气雷达的测试和定标方法,将测试重点放在天馈系统、T/R组件、脉冲压缩、动态范围的测试和定标上,以解决不同观测模式、不同波位的天线增益等参数变化引起的回波强度测量误差问题。测试结果表明:天馈系统在不同观测模式下的天线参数随仰角的变化情况、波束指向的准确度、T/R组件的动态范围等均符合设计要求,回波强度和径向速度定标精度较高。雷达经过测试和定标后,于2014年5—8月分别在安徽定远和四川甘孜进行外场试验,并与附近多普勒天气雷达 (SA) 和C波段双线偏振雷达观测数据进行对比,结果表明:回波强度误差在合理范围内,精细测量、警戒搜索、快速观测3种模式观测的强回波的水平和垂直位置、结构和系统误差均比较一致,数据可靠。  相似文献   

3.
中国气象科学研究院灾害天气国家重点实验室与安徽四创电子股份有限公司联合研发了专门用于快速观测对流过程、具有多波束观测能力的X波段相控阵天气雷达(XPAR),并利用该雷达与C波段双线偏振雷达(CPOL)于2013年4~6月在广东省江门市鹤山站进行了对比观测试验,以检验该雷达观测模式及其对快速变化的对流云演变过程的观测能力,为进一步改进雷达观测模式提供依据。本文首先介绍了XPAR的主要技术指标和观测模式,利用实测数据对比分析了三种观测模式观测的回波结构、灵敏度,并与C波段双线偏振雷达数据进行了对比,详细分析了2013年5月30日一次中尺度线状对流系统后部的单体的发展和消亡过程,讨论了XPAR分钟级数据在分析对流过程演变中的作用。结果表明:(1)XPAR三种观测模式获取的降水回波结构合理,实现了在1 min内完成一个高空间分辨率的体扫的探测功能,数据的时空分辨率远远高于现有的机械扫描雷达;(2)XPAR的精细观测模式数据揭示了单体触发、发展和演变过程,清晰给出了两次径向辐合发展过程及其与回波发展的关系,给出了新一代天气雷达和C波段双线偏振雷达不能提供的新的事实;(3)XPAR分钟级数据对进一步认识对流单体内部γ中尺度及其更小尺度系统的发展和演变有非常大的帮助。  相似文献   

4.
区域雷达网同步观测对比分析   总被引:5,自引:0,他引:5  
利用长江中游的合肥、宜昌、武汉、常德和长沙雷达周围的1:25万的地形高度数据得到各雷达的混合扫描仰角和等射束高度拼图。选用2004年7月17—19日5部雷达同步观测的雷达体扫资料,分析了各雷达的最低扫描仰角;在尽量排除地物杂波、波束阻挡、距离衰减和波束展宽等因素影响的情况下,对比分析了5部雷达构成的有重叠覆盖区的7个雷达对的反射率因子差异。结果表明:(1)对雷达最低扫描仰角进行分析可以检查雷达的仰角标定,武汉和合肥雷达平均最低观测仰角比VCP21扫描方式规定的要低;(2)用雷达对等距离线上的反射率垂直剖面可以分析雷达对同步观测的回波空间位置和强度差异,常德雷达和其周围雷达同步观测的回波高度明显偏低;(3)用雷达对等距离线上某高度的反射率因子曲线变化的一致程度可以分析雷达的方位标定,这5部雷达没有明显的方位定标偏差;(4)用雷达对等距离线上某高度的平均反射率因子差可以分析雷达对同步观测的系统观测差,宜昌雷达和其周围的雷达相比,观测的回波强度偏强,而武汉和其周围的雷达相比,观测的回波强度偏弱;(5)反射率因子差的时间平均值随着反射率因子的大小变化而变化,当观测的反射率因子越大时雷达对的反射率因子差的时间平均值也越大。  相似文献   

5.
为了提高山区复杂地形条件下局地强对流天气监测预警能力,有效减小天气雷达之间对降水目标物回波的测量误差,选取贵阳、毕节、遵义三部多普勒天气雷达同步观测体扫资料,以贵阳多普勒天气雷达站为基准,对比分析了强对流天气的雷达回波强度的变化特征。初步分析结果表明:贵阳与遵义、毕节雷达之间观测的回波强度具有一致性的波动特征,且存在较大的相关性;贵阳雷达观测的回波强度总体低于毕节、遵义雷达观测数据结果;两部雷达之间回波强度差异主要是由云和降水对雷达波的衰减所产生。  相似文献   

6.
解妍琼  张云  杨波  王佳  王亚  张鹏 《气象科学》2022,42(1):116-123
为利用天气雷达回波资料实现雷暴的自动识别,提出了一种基于温度层强回波区域面积的天气雷达雷暴自动识别方法。该方法首先利用雷达回波体扫数据在水平范围内搜索强回波区域;再对某一温度层上,达到设定阈值的雷达回波反射率因子的区域进行面积求和,当水平范围强回波区域面积达到识别面积阈值时,判定该强回波区域为雷暴区域。在此基础上,结合S波段双偏振多普勒天气雷达观测资料、闪电定位资料,采用了17个雷暴天气过程的312个雷暴区域检验识别算法。结果表明:当等高度平面位置显示(CAPPI)数据处理中采用(35 dBZ,0℃,2 km^(2))参数组合能够达到最优的识别效果,识别概率可达87.5%,虚警率为32.9%,临界成功指数为61.2%。该方法可以用于天气雷达的雷暴计算机自动识别业务。  相似文献   

7.
基于成都X波段天气雷达网络,设计了一种快速体积扫描+多RHI扫描的雷达组网扫描策略,通过优化体扫层数和雷达配置参数,增加对流单体中心RHI扫描,可获取低层空间、高时间分辨率和精细降水垂直结构;设计了一种重点区域识别、优先级计算和雷达任务智能调度的组网协同控制流程,并针对重点区域的天气过程识别问题,提出了一种基于神经网络的强对流识别算法和基于非监督学习聚类算法的强对流天气回波自动识别和定位方法。通过雷达试验表明,该组网策略和协同控制方法能有效获取强对流天气过程的垂直精细结构。  相似文献   

8.
张志强  刘黎平 《气象学报》2011,69(4):729-735
由中国气象科学研究院国家灾害天气重点实验室与中国电子科技集团南京第14研究所联合研制的S波段相控阵天气雷达采用宽波束发射多波束接收,从而很大程度上缩短雷达扫描周期,但是由于相控阵雷达其波束宽度的增加以及波束宽度与增益不再是定值而是随着仰角而发生变化,必然在一定程度上牺牲雷达探测分辨率,造成其回波细节的缺失。为了比较该S波段相控阵天气雷达与S波段多普勒天气雷达在探测云反射率因子大小和结构方面的差异,采用双线性插值方法,模拟出空间分辨率很高的降水云团,并模拟相控阵天气雷达和S波段新一代天气雷达的波束特性对其进行扫描,通过模拟扫描得到的反射率回波,分析了对同一降水云团、相同距离位置,相控阵天气雷达与S波段常规多普勒天气雷达回波在水平方向和垂直方向的差异,结果表明:相控阵雷达对回波水平方向上和垂直方向上的平滑作用在一定程度上改变了回波的结构,减弱了回波的中心强度,使一些小的强回波中心消失。相对于S波段多普勒天气雷达,减少了极弱回波与强回波的面积,增加了中间强度回波的面积。探索了模拟分析相控阵天气雷达与多普勒天气雷达数据的方法,为相控阵天气雷达的定标和定量测量提供了理论参考。  相似文献   

9.
自天气雷达问世以来,教科书和观测规范规定:在观测单体云时,先以一定仰角做PPI(平面位置显示,简称平显),然后再将雷达扫描线正对PPI扫描所得云体回波强中心做RHI(距离高度显示,简称高显),最终得出云体回波最大高度(顶高)及强度信息,这一观测方法是目前通用的观测规则,这里称为常规方法。但是,我们在实际工作中发现在某些特定的条件下用上述方法不能观测出云体回波的最大高度及强中心顶高,特别是在防雹观测指挥中由于用上述方法观测出的云体回波最大高度及强中心顶高低于实际高度值,容易发生错误识别。1环境风场对单…  相似文献   

10.
山东省济南市的S波段天气雷达与泰山山顶处的C波段雷达相距67 km。为了定量分析两部雷达扫描观测的回波强度在不同个例中的差异程度,从2007—2010年两部雷达观测中选出10次有明显回波的个例,对3个高度的CAPPI及相同观测区域的格点化回波强度资料进行对比分析。结果表明:10次个例的整体对比中,两部雷达在3个高度(2、3、4 km)的CAPPI回波强度资料的概率密度有较好的相似性;两部雷达回波强度均值随着选取高度增加而增大,每个高度上S波段均值较C波段大2 dBz左右。其中,6次降雨个例3 km的CAPPI资料对比中,一次平均强度小于30 dBz的降水过程,且强回波所占比例较小,C波段雷达衰减小,两部雷达测量回波强度一致性最好;其余5次过程中,S波段雷达测量的平均回波强度值均在30 dBz以上,且强回波所占比例较多,C波段由于衰减等原因,两部雷达的测量存在不同程度的差异。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

17.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

18.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

19.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号