首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用陕西省区域数值模式系统,通过对比WRF中两种大气边界层方案(MJY和YSU),对陕西省2021年7月地面和高空要素预报开展了对比试验。结果表明:地面要素预报上,MYJ方案的24 h累积降水量预报的空报率和漏报率都更低,TS评分更高,预报效果更好,逐小时降水量预报的BIAS评分随预报时效的增加变化更小,空报率、漏报率和TS评分也整体优于YSU方案,表明MYJ方案对降水预报的稳定性更好。两个方案的2 m温度和10 m风场预报存在正偏差,2 m比湿预报存在负偏差,即预报场的温度偏高、风速偏大、湿度偏干,YSU方案在2 m温度和10 m风场预报上效果更好,而MYJ方案在2 m比湿预报上效果更好。高空要素预报上,两个方案在各个高度层上对各个要素的预报各有优劣,其中YSU方案在高空风速预报上较MYJ方案更稳定。  相似文献   

2.
基于乌鲁木齐区域数值预报业务系统,运用MET检验工具,对2017年各季节DOGRAFSv1.0预报性能进行客观检验。结果表明:(1)2m温度日间预报温度整体偏低,夜间多数站点预报温度偏高;冬季预报温度偏高,其他三个季节温度预报整体偏低。10m风速冬季模拟性能最差,春季次之;所有季节风速预报均偏大。(2)夏季、秋季高空温度预报误差小,在3.0℃以内,冬季误差最大,温度预报整体呈冷偏差;不同季节高空位势高度随高度增加误差增大,误差约在6.5~12.0gpm,预报高度比实际高度偏低;不同季节高空U、V风随高度增加误差先增大后减小,均方根误差分别为2.4~6.2m/s和1.8~5.2m/s,U风预报整体比实况偏小,V风预报整体比实况偏大。(3)冬季大阈值降水漏报率较高,12.1mm阈值降水Bias评分仅为0.2,秋季大阈值降水空报率较高,12.1mm阈值降水Bias评分在2.0以上,夏季空、漏报率较低;在新疆地区,四个时段中14~20 BJT 、20~次日02 BJT空报站点数多于漏报,14~20 BJT空报率最高,02~08 BJT漏报率最高,08~14BJT晴雨预报以漏报为主;日间Ts评分高于夜间。  相似文献   

3.
BJ-RUC系统模式地面气象要素预报效果评估   总被引:3,自引:1,他引:2       下载免费PDF全文
利用自动气象站逐小时地面观测资料,采用客观检验方法对北京市气象局快速更新循环预报 (BJ-RUC) 系统在2008—2010年5—9月的预报结果进行检验,初步评估了BJ-RUC系统对地面气象要素的业务预报性能。结果表明:BJ-RUC系统对地面气象要素预报与实况的变化趋势有很好的一致性。其中,2 m温度预报整体偏高,误差范围为-1.5~1.5℃,早上和傍晚偏大,正午偏小;2 m相对湿度的预报整体偏低,误差为-25%~0,白天偏大,夜间偏小;10 m风速预报明显偏大,午后尤为显著,误差为0.6~1.2 m·s-1;6 h累积降水的晴雨预报效果较好,TS评分可达到0.4。系统在初始起报时次的稳定性较差,从第3个起报时次开始逐渐稳定,但预报误差随着预报时效的增长逐渐增大,12 h内的预报误差较小,预报结果较可靠,在短时临近预报中具有参考价值。  相似文献   

4.
通过T639模式预报产品在内蒙古地区降水量、2 m温度、相对湿度和10 m风向、风速及降水过程预报效果的适用性研究,得出以下结论,温度和相对湿度预报的准确率较风向、风速明显偏高,温度和相对湿度预报的误差系统偏小,风速预报误差偏大的概率较大;降水量的预报准确率随降水等级增加而递减,对小雨而言,模式漏报率小于空报率,多报降水的偏差和少报降水的偏差相近。在预报要素空间分布上,风向预报的偏差顺时针偏转,其夹角小于45°,温度预报偏差总体偏小,相对湿度预报偏差由西向东表现为“+、-、+、-”的分布特征;小雨和中雨落区预报偏大,暴雨落区预报偏小;贝加尔湖冷涡强度的预报偏强,西太平洋副热带高压的强度预报偏弱,影响范围偏西偏北。  相似文献   

5.
基于华南地区自动站逐小时观测资料, 采用传统站点评分、邻域法等评估华南区域高分辨率数值模式(包括GRAPES_GZ_R 1 km模式和GRAPES_GZ 3 km模式)对降水、地面温度和风场等要素的预报能力。结果表明: GRAPES_GZ_R 1 km模式的降水预报技巧优于GRAPES_GZ 3 km模式, 模式预报以正偏差为主。对于不同起报时间的预报, 00时(世界时, 下同)起报的预报效果优于12时。GRAPES_GZ_R 1 km模式的TS评分是GRAPES_GZ 3 km模式的两倍以上, 对不同降水阈值的评分均较高。分数技巧评分(FSS)显示GRAPES_GZ_R 1 km模式6 h累计降水预报在0.1 mm、1 mm及5 mm以上的降水均可达到最低预报技巧尺度, 对所检验降水对象的空间位置把握能力更好。2 m气温和10 m风速检验结果表明两个模式均能较好把握广东省温度的分布特征, GRAPES_GZ_R 1 km模式对2 m气温预报结果优于GRAPES_GZ 3 km模式, 预报绝对误差更小; 两个模式对风速的预报整体偏强, 预报偏差在1~4 m/s之间, 但相比之下GRAPES_GZ 3 km模式在风场预报上表现更好。GRAPES_GZ_R 1 km模式的2 m气温和10 m风速预报偏差随降水过程存在明显波动, 强降水过后温度预报整体偏低, 风速预报偏强, 在模式产品订正、使用等需要考虑模式对主要天气系统的预报情况。总的来说, GRAPES_GZ_R 1 km模式的预报产品具有较好的参考价值。   相似文献   

6.
从降水和气温要素入手,对FZMOS客观订正预报产品性能进行初步评估,总结其误差发生特点并分析误差来源,供预报员参考,提高市级关键点预报订正业务质量。研究表明:预报员在FZEC-MOS雨量及高温预报上仍有提高订正质量的空间;高温预报在冬春季普遍偏低而夏秋季普遍偏高,夏季的低温普遍预报偏高,雨量预报普遍偏大,在夏季尤为明显;泉州地区某些关键点(如德化葛坑、大坠岛等)预报性能较差;初冬冷空气可能预报偏强,春末初夏的冷空气有可能预报偏弱;3-6月地面温度回暖不均,易产生暖区辐合辐散,触发对流,雨量往往预报偏小,需调大;春季低层变性冷空气之上的西南风推进较快,雨量需要往大调;夏季台风影响下的雨量预报偏大,需要适当调小。  相似文献   

7.
太原雾天能见度预报   总被引:1,自引:0,他引:1       下载免费PDF全文
利用中尺度数值预报模式MM5对山西省2009年发生的几场典型雾个例进行数值模拟。结果表明:模拟2 m温度比观测值偏低约2 ℃,相对湿度模拟结果比观测值偏大约15 %,10 m的模拟风速比观测的偏大0-2 m·s-1。山西省雾的预报指标为20 m液态水含量大于等于0.13 g·kg-1而小于0.60g·kg-1、20-1500 m高度大气层存在逆温层、地面风速小于4 m·s-1。利用太原测站日平均能见度、日平均相对湿度以及空气污染指数进行拟合建立太原能见度预报模型,并利用实测资料订正MM5、CAPPS模式预报误差,给出订正后的能见度预报方程并以两次实例对区域及太原雾天能见度预报表明该能见度预报模型有一定的适用性。  相似文献   

8.
北京快速更新循环预报系统(BJ-RUC)要素预报质量评估   总被引:4,自引:2,他引:2  
魏东  尤凤春  杨波  范水勇  陈敏 《气象》2011,37(12):1489-1497
使用自动站观测资料对BJ-RUC系统预报的北京15个观测站的逐时2 m温度、相对湿度、1小时降水量和风速等地面要素质量进行检验评估。结果表明:BJ-RUC系统预报的2 m温度、相对湿度和风速与实况具有一致的变化趋势,但各要素的预报性能不尽相同。结果表明:(1)对于2 m温度的预报,±1℃误差的准确率为0.2~0.5,±2℃误差的准确率更高;预报性能与预报时效无明显关系;温度预报准确性与季节和日变化有关,春、秋季优于冬、夏季,夜间优于白天。(2)对相对湿度的预报整体偏低,夏季白天偏低、冬季白天偏高。(3)对1小时降水的预报,无论全年还是夏季,晴雨预报准确率很高;对0.1 mm降水的TS评分在0.2左右。(4)对不同站点的预报性能存在明显差异。对平原地区,即海拔高度较低的站点预报性能相对较好,15个站点中,对北京的代表站点(南郊观象台)的预报最为准确;对山区站点的预报性能相对较差,对海拔最高的延庆站的预报性能最差。总体来说,BJ RUC对站点要素预报的变化趋势较好,预报准确率较高,具有很好的参考价值,但要素预报与季节、日变化及海拔高度等因素有关.具体应用时还需做适当订正。  相似文献   

9.
利用WRFDA-FSO(Forecast Sensitivity to Observation)系统,统计分析2009年和2010年5—10月青藏高原东侧常规地面和高空观测对WRF模式预报误差的贡献。结果表明:地面观测资料各要素中,温度场对模式预报误差贡献最大,风场、气压和水汽场的贡献相对小;四川东部、广西大部和云南南部边缘地区的资料对改进预报产生正贡献较大。高空资料各要素中,温度场对模式预报误差贡献最大,其次是水汽场,风场贡献最小;高空站资料对改进预报产生正贡献较大的区域主要分布在云南大部、贵州西部边缘和广西西北部边缘地区。依据误差统计结果,剔除对改进预报产生负贡献较大的地面和高空站资料后,模式降水和温度预报效果有所改善。  相似文献   

10.
为了研究北京快速更新循环同化预报系统(BJ-RUCv2.0)在北京地区降水日变化的预报偏差特征及其成因,利用2012—2015年夏季BJ-RUCv2.0系统第2重区域(3 km分辨率)预报结果和北京地区122个自动气象站逐时观测数据以及观象台探空观测资料,分析模式对北京地区降水日变化预报偏差的区域性特征和传播特征,研究模式局地环流预报偏差特征及其对降水预报偏差的可能反馈机制。研究结果表明,BJ-RUCv2.0系统多个更新循环的预报在北京平原地区均存在夜间降水漏报问题,降水预报偏差表现为模式预报降水在西部山区降水偏多,预报降水雨带难以在平原地区增强发展,造成了模式降水在傍晚山区偏多而夜间平原地区降水明显偏少。通过分析模式局地环流预报偏差及其响应机制发现,由于白天平原地区近地层偏暖偏干,山区底层偏冷中层偏湿,造成了山区-平原地区间的温度梯度强度偏强且强温差出现时间提前,西部山区午后降水偏多;由于平原地区地面气温预报持续偏高,入夜后偏北风难以到达平原地区,造成了山区-平原间的地形辐合线位置偏北,影响山区降水雨带向平原地区移动,同时平原地区近地层内水汽持续偏低,抑制降水雨带在东移过程中的发展,造成模式在平原地区夜间降水预报容易出现漏报。模式冷启动所用的GFS资料土壤湿度在北京平原地区明显小于实际观测,是模式预报偏暖偏干的可能原因之一。  相似文献   

11.
利用FY-2G卫星反演云特征参量产品、MICAPS高空和地面形势场、逐小时地面降水和探空数据等资料,从云的宏观、微观结构及垂直结构和降水方面对2016年6月22日19:00-20:00拉萨市短时冰雹天气发生期间的GRAPES_CAMS云降水模式预报结果进行高原地区适用性检验。结果表明:(1)模式能够预报西藏地区的降水落区分布,对强降水中心和降水强度的预报存在一定偏差;(2)模式能较好地预报云系发展演变,在云系移速、移向上预报结果与实况基本一致,对云系发展旺盛程度的预报有一定偏差;(3)模式能较准确地预报高原对流云宏观特征,对流云的垂直发展预报结果比实况弱,云顶高度偏低1.0~2.0 km,云顶温度偏高10~20℃;(4)在云垂直结构特征上,模式预报与卫星、高空监测较为吻合,云的冷暖性质、垂直结构、特征温度层高度与实况接近。  相似文献   

12.
根据地理地貌,将全国分成东北、西北、东南、西南四个区域,对T639、T213、ECMWF、日本和德国数值预报模式2008年5—9月的预报分区域进行了客观检验分析。结果表明:模式的降水预报能力与地理的关系似乎比与地形的关系更为紧密一些;2008年,各模式在西南地区的降水预报能力随着降水级别的增加而减弱,到暴雨级别,西南区已成为各模式Ts评分最低区域;降水级别预报正确率高值区域在北方两区,正确率最低值出现在四川盆地;模式降水量预报平均误差显示,大误差并不出现在高原主体,而基本都与大的山脉对应,且都为负误差,但四川盆地除外,仍然是大误差所在地;2 m温度预报平均误差的量级是随海拔高度的增加而增加,误差由正转为负;各模式高空要素预报最大误差大都出现在西南区,其次是西北区。  相似文献   

13.
对1998年汛期大洪水期间日本、HLAFS、MAPS模式降水预报场进行预报能力分析。分析结果表明 :日本和HLAFS模式降水预报以偏小为主 ,而MAPS模式是偏大的略多于偏小的 ;雨带位置有误差的所占的比例是 :日本模式53 % ,HLAFS模式34% ,MAPS模式47%。  相似文献   

14.
GRAPES_MESO模式对一次强降水过程的预报及误差分析   总被引:2,自引:0,他引:2  
本文应用西南低涡大气科学试验加密观测资料,常规探空与地面资料,自动站资料等,分析国家数值预报中心运行的GRAPES_MESO中尺度模式对2010年7月14~19日四川强降水过程预报能力.结果表明,模式降水预报能一定程度反映实况降水.在模式误差分析基础上,指出造成降水预报偏差的可能原因是模式预报的高度场持续偏低,预报低值系统偏强,高值系统偏弱,不利于四川上空的辐合低值系统维持;预报的登陆台风强度偏强,台风外围气流与副高外围环流结合,导致西南低空急流较强,加之,模式预报盆地水汽场在西部偏多,东部偏少,对流层中低层冷空气活动偏弱,暖湿气流活动较强,急流带北移较快,辐合流场位置偏北偏东,导致了积分后期预报降水与实况出现较大偏差,盆地东北部降水偏弱,预报降水落区偏东、偏北.探空分析还指出,盆地测站温度偏差较大,可能是受复杂地形条件下插值误差以及观测误差影响所致,由于盆地测站风向受周边地形影响较大,各站和各层分析风的不确定性较大.误差分析揭示了高度场预报偏低,温度场偏高,地面气压偏低等基本特征,误差的来源需要作进一步的数值试验与动力诊断分析.  相似文献   

15.
运用我国2016—2018年三个冬半年(10月至次年3月)地面2515个站的天气现象观测资料,对ECMWF(European Centre for Medium-Range Weather Forecasts)的降水相态预报产品(PTYPE)(分为雨、雨夹雪、雪和冻雨四类)进行了系统性的检验评估,包括细网格确定性模式预报产品和集合预报系统概率预报产品。结果显示,ECMWF的确定性预报产品对四类降水相态的正确率普遍达到90%以上,对降雨和降雪的TS评分也较高,冻雨次之,雨夹雪的TS评分较低,预报能力有限。确定性模式对我国雨雪分界线的预报,普遍存在短期位置略偏南、中期随时效延长越来越偏北的误差特点,且对雨夹雪的预报范围明显偏小,对冻雨的预报范围明显偏大。集合预报系统从概率的角度一定程度上弥补了确定性模式的上述误差。对概率预报的检验结果显示,集合预报系统降雨概率普遍偏低,降雪概率短期偏高、中期偏低,而雨夹雪和冻雨概率普遍偏低,但是都有一定的预报技巧。集合预报系统相对于确定性模式的优势,降雨体现在较小花费损失比事件的预报上,降雪体现在较大花费损失比事件的预报上。对雨夹雪和冻雨,相对于确定性模式,集合预报系统体现出了显著的优势,尤其是冻雨,集合预报系统的优势更加明显。  相似文献   

16.
2010年AREM、GRAPES模式预报性能对比检验分析   总被引:3,自引:0,他引:3  
AREM和GRAPES都是四川省气象局的准业务模式,本文通过检验分析发现:两个模式对四川地区夏季降水的评分值都不理想。两个模式模拟低涡系统皆偏弱,直接导致其模拟的风场辐合偏弱,水汽辐合偏小,降水强度偏弱。两个模式预报的四川盆地上空的比湿都偏小,反映局地水汽对降水的贡献偏多,而外部水汽的输送偏弱。尤其是AREM模式对中低层水汽含量的调整非常显著,容易导致其后24小时降水预报的失败。另外,通过与探空资料的比较结果显示:GRAPES模式在250hPa以上层的模拟结果存在明显的误差,对整个高度场的模拟都存在一个系统偏大。  相似文献   

17.
利用基于目标诊断的空间检验方法(MODE)和时空检验方法(MTD)评估了华南3 km高分辨率区域数值模式(GRAPES_GZ3 km)对2019年海南岛暖季非台降水预报性能, 结果显示: (1)模式24 h累积降水预报的空间分布范围偏大、降水强度偏强; (2)模式逐小时降水预报的平均质心总体偏西和偏北, 降水出现时间总体偏早1~3 h, 结束时间总体偏晚2~4 h, 降水持续时间偏长; 预报的降水目标数量偏多, 与实况一致均存在着主峰和次峰形态的昼夜分布特征, 但预报的昼间主峰出现时间比实况偏早2 h; 预报的短时强降水出现频次总体偏多。相对于传统的预报和观测点对点检验评估方法, MODE和MTD方法具有捕捉模式预报偏差特征的优势。   相似文献   

18.
GRAPES-GFS模式暴雨预报天气学检验特征   总被引:5,自引:4,他引:1  
宫宇  代刊  徐珺  杨舒楠  唐健  张芳  胡宁  张夕迪  沈晓琳 《气象》2018,44(9):1148-1159
本文采用天气学检验方法,对2016年度国家气象中心GRAPES全球数值预报系统(GRAPES-GFS)业务预报暴雨过程及2013-2015年部分回算个例进行了检验,并结合对比欧洲中期天气预报中心确定性预报模式(EC模式)和国家气象中心全球谱模式T639L60(T639模式)降水预报,梳理总结业务GRAPES-GFS模式预报性能优势和系统性偏差特征。被检验暴雨过程共38次,其中南方暴雨过程20次,北方暴雨过程6次,热带扰动或台风降水过程12次。依靠预报员主观天气学检验分析,从降水预报效果检验出发,结合主要影响天气系统和示踪物理量检验,梳理总结模式预报系统性偏差,以期全面发掘该业务预报模式性能。结果表明对短期时效内的降水预报,GRAPES-GFS模式预报稳定性较好,整体明显优于T639模式。但还存在诸如对对流性降水预报较实况偏北或对主雨带南侧暖区降水预报不足的偏差特征;另对弱高空波动背景下的对流性降水预报偏弱;而在降水预报强度大致正确的情况下,对降水系统南侧偏南气流控制区域预报湿度偏大,对副热带地区的低涡系统预报偏强。  相似文献   

19.
根据地形特征,将西南地区划分为高原区、边坡区和盆地区,引入统计学"不稳定度"定量描述模式预报稳定性,对2016年6月—2017年9月全球中期天气预报(GRAPES_GFS)和欧洲中期天气预报中心(EC)在西南地区的高层形势场、主要的天气影响系统和地面要素预报性能进行了主客观检验,一定程度揭示了GRAPES_GFS和EC在西南地区的预报稳定性、地形的影响以及二模式预报性能的异同。结果显示:GRAPES_GFS高空高度场、温度场预报不稳定度分布呈北高南低型,相对湿度、风速预报不稳定度大值区在高原边缘;各要素预报不稳定度季节性周期最为显著,其位相和振幅因要素不同而有所不同;地形主要影响温度和风向预报误差值,但对相对湿度和风速预报的影响则体现在误差随时效的增长速率差异上;"漏报"是模式对西南地区天气系统的主要预报误差源,"低报"则是模式对西南地区2 m温度预报误差的最大来源;模式对西南地区降水落区预报有效率大约为50%,但强度预报通常偏低。EC与GRAPES_GFS的误差特征没有本质区别,但EC误差更小,稳定性更高。  相似文献   

20.
通过分析广东省海洋测站的实况风速特征,发现地理位置等因素影响海洋观测,以东莞浮标站为代表研究后发现浮标站能最大程度反映海面风场的真实情况。以东莞浮标站为例,对2019年全年粤中海域海面风的省级主观网格预报(20:00起报)、ECMWF和GRAPES3km模式预报进行了评估,结果表明:客观预报误差总体偏小,误差随风力增大趋于显著,模式对3级及以下风力绝对误差最小;主观预报对4级到6级风预报能力最好,对3级及以下的风力预报偏大,对7级风预报误差偏小,对4级到7级风预报相对模式预报均有正技巧。客观预报对不同风向的风力预报误差系统性偏小,对东南风、南风和西南风的预报误差区间较小,对东风和西风的预报误差区间较大;主观预报对东南风、北风、东北风和西南风的预报效果较好,对南风的预报偏大,对东风和西风的预报偏小,主、客观预报对西北风预报能力均最差;除西北风外,主观预报对模式预报有正技巧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号