首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
东亚地区陆地生态系统的时空变率表现出明显的对季风气候的响应特征。使用EOF(经验正交分解)方法分析了AVIM2动态植被陆面模式离线模拟试验模拟的1953~2004年东亚季风区夏季陆地生态系统总初级生产力(GPP)、生态系统净初级生产力(NPP)、净生态系统初级生产力(NEP)、植被呼吸以及土壤呼吸的时空分布特点,探讨了东亚夏季风对陆地生态系统碳循环影响机制。研究发现,在强季风年,江淮地区高温少雨的特点限制了光合作用,造成GPP偏低;而华南地区在强季风年气候温暖湿润,利于植被生长,GPP偏高。季风对于植被呼吸和土壤呼吸影响不明显,使得GPP和植被呼吸之差NPP的变化及NPP和土壤呼吸之差NEP的变化与GPP的变化保持一致。在强季风年江淮流域地区干热的气候条件使得NPP和NEP降低;但是在华南地区温度升高的同时降水增多使得在NPP偏高的基础上NEP也偏高。  相似文献   

2.
1. IntroductionAccording to the reconstruction of paleo-temperature based on δ18 O data of ice core in theGreenland (see Jouzel et al., 1987; Grootes et al.,1993; Blunier and Brook, 2001), the current inter-glacial epoch, the Holocene, began at ca. 11.5 thou-sand years before present (ka BP). Multiple sources(pollen data, macrofossils) reveal that the summer cli-mate in the Northern Hemisphere was warmer in theearly to middle Holocene (MH) (ca. 8-6ka BP) relativeto the present climate. …  相似文献   

3.
全球植被与大气之间碳通量的模式估计(英文)   总被引:1,自引:0,他引:1  
用大气植被相互作用模式(AVIM)模拟了全球陆地植被的净初级生产力(NPP)。AVIM由相互耦合的两部分组成:物理过程,包括陆地表面水分和能量在土壤、植被与大气之间的传输;以及生理生态过程,如:光合、呼吸、干物质分配、凋落和物候等。全球的植被分为13类,土壤按质地分为6类。用EMDI提供的全球1637个包括不同植被类型的NPP观测点数据对模型进行了检验。NPP模拟的结果表明:全球陆地植被的平均NPP为405.13gCm-2yr-1,不同植被类型的平均 NPP变化范围在99.58 g Cm-2yr-1(苔原)到996.2 g Cm-2yr-1(热带雨林)之间。全球年总NPP为60.72GtCyr-1,其中最大的部分为热带雨林,15.84GtCyr-1,占全球的26.09%。最大的碳汇是在北半球的温带。模式模拟的NPP在全球的空间和季节分布是合理的。  相似文献   

4.
全球植被与大气之间碳通量的模式估计   总被引:15,自引:0,他引:15  
用大气植被相互作用模式(AⅥM)模拟了全球陆地植被的净初级生产力(NPP)。AⅥM由相互耦合的两部分组成:物理过程,包括陆地表面水分和能量在土壤、植被与大气之间的传输;以及生理生态过程,如:光合、呼吸、干物质分配、凋落和物候等。全球的植被分为13类,土壤按质地分为6类。用EMDI提供的全球1637个包括不同植被类型的NPP观测点数据对模型进行了检验。NPP模拟的结果表明:全球陆地植被的平均NPP为405.13 g C m-2yr-1,不同植被类型的平均NPP变化范围在99.58 g C m-2yr-l(苔原)到996.2 g C m-2yr-l(热带雨林)之间。全球年总NPP为60.72 Gt C yr-l,其中最大的部分为热带雨林,15.84 Gt C yr-1,占全球的26.09%。最大的碳汇是在北半球的温带。模式模拟的NPP在全球的空间和季节分布是合理的。  相似文献   

5.
The seasonal cycle of atmospheric CO2 at surface observation stations in the northern hemisphere is driven primarily by net ecosystem production (NEP) fluxes from terrestrial ecosystems. In addition to NEP from terrestrial ecosystems, surface fluxes from fossil fuel combustion and ocean exchange also contribute to the seasonal cycle of atmospheric CO2. Here the authors use the Goddard Earth Observing System-Chemistry (GEOS-Chem) model (version 8-02-01), with modifications, to assess the impact of these fluxes on the seasonal cycle of atmospheric CO2 in 2005. Modifications include monthly fossil and ocean emission inventories. CO2 simulations with monthly varying and annual emission inventories were carried out separately. The sources and sinks of monthly averaged net surface flux are different from those of annual emission inventories for every month. Results indicate that changes in monthly averaged net surface flux have a greater impact on the average concentration of atmospheric CO2 in the northern hemisphere than on the average concentration for latitudes 30-90°S in July. The concentration values differ little between both emission inventories over the latitudinal range from the equator to 30°S in January and July. The accumulated impacts of the monthly averaged fossil and ocean emissions contribute to an increase of the total global monthly average of CO2 from May to December.An apparent discrepancy for global average CO2 concentration between model results and observation was because the observation stations were not sufficiently representative. More accurate values for monthly varying net surface flux will be necessary in future to run the CO2 simulation.  相似文献   

6.
There is considerable uncertainty as to whether interannual variability in climate and terrestrial ecosystem production is sufficient to explain observed variation in atmospheric carbon content over the past 20–30 years. In this paper, we investigated the response of net CO2 exchange in terrestrial ecosystems to interannual climate variability (1983 to 1988) using global satellite observations as drivers for the NASA-CASA (Carnegie-Ames-Stanford Approach) simulation model. This computer model of net ecosystem production (NEP) is calibrated for interannual simulations driven by monthly satellite vegetation index data (NDVI) from the NOAA Advanced Very High Resolution Radiometer (AVHRR) at 1 degree spatial resolution. Major results from NASA-CASA simulations suggest that from 1985 to 1988, the northern middle-latitude zone (between 30 and 60°N) was the principal region driving progressive annual increases in global net primary production (NPP; i.e., the terrestrial biosphere sink for carbon). The average annual increase in NPP over this predominantly northern forest zone was on the order of +0.4 Pg (1015 g) C per year. This increase resulted mainly from notable expansion of the growing season for plant carbon fixation toward the zonal latitude extremes, a pattern uniquely demonstrated in our regional visualization results. A net biosphere source flux of CO2 in 1983–1984, coinciding with an El Niño event, was followed by a major recovery of global NEP in 1985 which lasted through 1987 as a net carbon sink of between 0.4 and 2.6 Pg C per year. Analysis of model controls on NPP and soil heterotrophic CO2 fluxes (Rh) suggests that regional warming in northern forests can enhance ecosystem production significantly. In seasonally dry tropical zones, periodic drought and temperature drying effects may carry over with at least a two-year lag time to adversely impact ecosystem production. These yearly patterns in our model-predicted NEP are consistent in magnitude with the estimated exchange of CO2 by the terrestrial biosphere with the atmosphere, as determined by previous isotopic (13C) deconvolution analysis. Ecosystem simulation results can help further target locations where net carbon sink fluxes have occurred in the past or may be verified in subsequent field studies.  相似文献   

7.
Observations have shown a largely enhanced seasonal amplitude of northern atmospheric CO2 in the past several decades, and this enhancement is attributable to the increased seasonal amplitude of northern net ecosystem productivity (NEP amplitude). In the future, however, the changes in NEP amplitude are not clear, because of the uncertainties in climate change and vegetation dynamics. This study investigated the changes in NEP amplitude north of 45°N under future global warming by using a dynamic global vegetation model (DGVM). The authors conducted two sets of simulations: a present-day simulation (1981–2000) and future simulations (2081–2100) forced by RCP8.5 outputs from CMIP5. The results showed an overall enhanced northern NEP amplitude under the RCP8.5 scenario because of the increased maximum NEP and the decreased minimum NEP. The increases (decreases) in the maximum (minimum) NEP resulted from stronger (weaker) positive changes in gross primary production (GPP) than ecosystem respiration (ER). Changes in GPP and ER are both dominantly driven by surface air temperature and vegetation dynamics. This work highlights the key role of vegetation dynamics in regulating the northern terrestrial carbon cycle and the importance of including a DGVM in Earth system models.摘要观测显示过去几十年北半球大气二氧化碳季节幅度大幅增加, 这主要是由北半球陆地净生态系统生产力季节幅度的增加所致. 但是, 因为气候变化和植被动态的不确定性, 未来陆地净生态系统生产力季节幅度的变化还很不清楚. 本工作利用全球植被动力学模式研究了全球变暖背景下北纬45°以北陆地净生态系统生产力季节幅度的变化. 作者做了两大类试验: 当代试验 (1981−2000) 和CMIP5 RCP8.5 变暖情景驱动的未来试验 (2081−2100) . 结果显示, 在RCP8.5变暖情景下北半球中高纬陆地净生态系统生产力季节幅度整体增加, 这是因为陆地净生态系统生产力的月最大值增加且月最小值减小. 最大 (最小) 陆地净生态系统生产力的增加 (减小) 是由于总初级生产力的增加强 (弱) 于生态系统总呼吸. 总初级生产力和生态系统总呼吸的变化都主要受地表气温和植被动态的驱动. 本工作强调了植被动态对北半球中高纬陆地生态系统碳循环的关键调制作用, 也强调了在地球系统模式中包含全球植被动力学模式的重要性.  相似文献   

8.
含有动态植被过程的陆面模式Atmosphere-Vegetation Interaction Model(AVIM)与中国科学院大气物理研究所大气科学与地球流体力学数值模拟国家重点实验室(IAP/LASG)的9层大气环流模式AGCM 及20层的海洋环流模式(OGCM)耦合,建立了一个全球模式(GoALS-AVIM)并进行100年的模拟积分.后40年的结果分析表明,该耦合模式能够合理地模拟大气及陆地生态系统显著的年际变化.用奇异值分解(SVD)分析了东亚地区植被生长和气候变化的相互关系,发现在东业区域的植被净初级生产力(NPP)强弱的变化对血着大气环流的变化,特别是NPP分别与850 hPa的风场和500 hPa的高度场表现出很强的时空一致性.在东亚地区,由于植被类型的不同,导致NPP年际变化与降水、表面气温、短波辐射的年际变化的相关性不同,它们的年际变化与相关物理量场的年际变化表现出很强的植物种类的区别.  相似文献   

9.
利用一个基于过程的动态植被模型LPJ DGVM(Lund Potsdam Jena Dynamic Global Vegetation Model),模拟了中国区域潜在植被分布,考察了1981~1998年中国区域净初级生产〖JP〗力(NPP)、异养呼吸(Rh)和净生态系统生产力(NEP)的年际变化。模拟结果表明,在LPJ模型提供的植被功能类型(PFT)划分的条件下,中国区域除了分布裸土外,主要分布了6种潜在植被功能类型,即热带常绿阔叶林带、温带常绿阔叶林带、温带夏绿阔叶林带、北方常绿针叶林带、北方夏绿针叶林带和温带草本植物。在所考察的时间段内,中国区域总NPP从2.91 Gt · a-1(C)(1982年)变化到3.37 Gt · a-1(C)(1990年),平均每年增加0.025 Gt(C),其平均增长率为096%。中国区域总Rh从2.59 Gt · a-1(C)(1986年)变化到3.19 Gt · a-1(C)(1998年),具有105% 的平均年增长率,即平均每年增加0.025 Gt(C),并且中国区域温带草本植物相比其他植被功能类型,其NPP和Rh线性增加的趋势最为显著。研究结果还表明,LPJ模型在引入火灾机制后,中国区域总NEP的变化范围更加合理,即每年总NEP在-0.06 Gt · a-1(C)(1998年)和0.34 Gt · a-1(C)(1992年)之间变化,其平均值为0.12 Gt · a-1(C)。该结果表明,在所考察的时间段内,中国区域的陆地生态系统是碳汇。上述结果与其他研究结果基本一致,因而此模型模拟中国区域潜在植被分布和碳循环是有效的。    相似文献   

10.
智海  丹利  俞永强  徐永福  王盘兴 《气象学报》2009,67(6):1032-1044
利用中国科学院大气物理研究所(IAP)一个海洋-大气-动态植被耦合模式(GOALS-AVIM),进行了100年模拟积分.基于模拟结果,对东亚地区的植被净初级生产力(NPP)、降水、地面气温和短波辐射的季节变化进行了标准化对比,分析了NPP的时空格局与气候因子(气温、短波辐射和降水)的关系;利用奇异值分解(SVD)对东亚夏季降水场和NPP的关系进行分解.结果表明,夏季东亚地区植被NPP及相关气候因子的时空变化规律明显,耦合模式可以很好地模拟出观测存在的降水及NPP、LAI(叶面积指数)大值区随季节北移南退的形态;由于耦合模式中AVIM的双向特点,模式模拟的NPP与其他物理场的季节变化有很强的对应关系,而且在不同时间和地区,NPP与降水、地面气温、短波辐射表现出不同的对应关系,其中植被NPP时间变化与气温和降水的相关性都较高;从NPP场和降水场夏季逐月标准化距平奇异值分解的空间分布模态来看.NPP与降水在时空场上表现出很强的耦合性,NPP的空间格局与降水存在较好的相关性,不同地理位置的相关性强弱不同,分解出的降水场异常相关模态也再现了东亚夏季降水移动的时空特征,同时东亚雨带随季节变化与NPP的气候变率表现出不同的对应模态.  相似文献   

11.
The interaction between climate and vegetation along four Pole-Equator-Pole (PEP) belts were explored using a global two-way coupled model, AVIM-GOALS, which links the ecophysiological processes at the land surface with the general circulation model (GCM). The PEP belts are important in linking the climate change with the variation of sea and land, including terrestrial ecosystems. Previous PEP belts studies have mainly focused on the paleoclimate variation and its reconstruction. This study analyzes and discusses the interaction between modern climate and vegetation represented by leaf area index (LAI) and net primary production (NPP). The results show that the simulated LAI variation, corresponding to the observed LAI variation, agrees with the peak-valley variation of precipitation in these belts. The annual mean NPP simulated by the coupled model is also consistent with PIK NPP data in its overall variation trend along the four belts, which is a good example to promote global ecological studies by coupling the climate and vegetation models. A large discrepancy between the simulated and estimated LAI emerges to the south of 15°N along PEP 3 and to the south of 18°S in PEP 1S, and the discrepancy for the simulated NPP and PIK data in the two regions is relatively smaller in contrast to the LAI difference. Precipitation is a key factor affecting vegetation variation, and the overall trend of LAI and NPP corresponds more obviously to precipitation variation than temperature change along most parts of these PEP belts.  相似文献   

12.
Climate output from the UK Hadley Centre's HadCM2 and HadCM3 experiments for the period 1860 to 2100, with IS92a greenhouse gas forcing, together with predicted patterns of N deposition and increasing CO2, were input (offline) to the dynamic vegetation model, Hybrid v4.1 (Friend et al., 1997; Friend and White, 1999). This model represents biogeochemical, biophysical and biogeographical processes, coupling the carbon, nitrogen and water cycles on a sub-daily timestep, simulating potential vegetation and transient changes in annual growth and competition between eight generalized plant types in response to climate.Global vegetation carbon was predicted to rise from about 600 to 800 PgC (or to 650 PgC for HadCM3) while the soil carbon pool of about 1100 PgC decreased by about 8%. By the 2080s, climate change caused a partial loss of Amazonian rainforest, C4 grasslands and temperate forest in areas of southern Europe and eastern USA, but an expansion in the boreal forest area. These changes were accompanied by a decrease in net primary productivity (NPP) of vegetation in many tropical areas, southern Europe and eastern USA (in response to warming and a decrease in rainfall), but an increase in NPP of boreal forests. Global NPP increased from 45 to 50 PgC y−1 in the 1990s to about 65 PgC y−1 in the 2080s (about 58 PgC y−1 for HadCM3). Global net ecosystem productivity (NEP) increased from about 1.3 PgC y−1 in the 1990s to about 3.6 PgC y−1 in the 2030s and then declined to zero by 2100 owing to a loss of carbon from declining forests in the tropics and at warm temperate latitudes — despite strengthening of the carbon sink at northern high latitudes. HadCM3 gave a more erratic temporal evolution of NEP than HadCM2, with a dramatic collapse in NEP in the 2050s.  相似文献   

13.
利用一套高分辨率的气候驱动场和全球动态植被模型LPJ-WHyMe(Lund-Potsdam-Jena-Wetland Hydrology and Methane),模拟了中国东北地区潜在植被分布,并对中国东北地区1997~2010年平均净初级生产力(Net Primary Production, NPP)、净生态系统生产力(Net Ecosystem Production, NEP)、燃烧面积、火灾碳排放、土壤温度和土壤湿度进行了估算。LPJ-WHyMe的特点在于能够描述冻融的物理过程以及土壤中多层的湿度和温度。数值结果表明,在LPJ-WHyMe模型提供的植被功能类型(Plant Function Type, PFT)划分的条件下,中国东北地区主要分布了5种植被功能类型,即温带夏绿阔叶林带、北方常绿针叶林带、北方夏绿针叶林带、北方夏绿阔叶林带和温带草本植物。在研究时间段内,中国东北地区NPP的年平均值为376 g(C) m-2,变化范围在324.15~424.86 g(C) m-2之间。火灾机制的引入使得LPJ-WHyMe模型对NEP的模拟能力进一步提高,即NEP年平均值为42.36 g(C) m-2,表明中国东北地区陆地生态系统总体表现为“碳汇”。中国东北地区年平均燃烧面积分数为0.84%,火灾碳排放量为42.41 g(C) m-2,整体上模型高估了燃烧面积值和火灾碳排放量,模型对东北地区火灾的模拟仍然存在一定的局限性。中国东北地区土壤温度与气温呈正相关关系,且各层土壤温度与气温的相关性随着深度的增加而减弱。中国东北地区土壤湿度与降水呈正相关关系,土壤湿度与气温呈反相关关系。上述结果表明LPJ-WHyMe模型模拟中国东北地区潜在植被分布和碳循环是有效的。  相似文献   

14.
    
The spatial and temporal variability of land carbon flux over the past one hundred years was investigated based on an empirical model directly calculating soil respiration rate. Our model shows that during 1901–1995, about 44-89 PgC (equals to 0.5, 0.9 PgC/yr respectively) were absorbed by terrestrial biosphere. The simulated net ecosystem productivity (NEP) after the 1930s was close to the estimated value of “ missing C sink” from deconvolution analysis. Most of the total carbon sink happened during 1951–1985 with the estimated value of 33–50 PgC. Three major sinks were located in the tropics (10°S–10°N), Northern mid-latitudes (30°–60°N) and Southern subtropics (10°–40°S). During 1940s-mid-1970s, carbon sinks by terrestrial ecosystem increased with time, and decreased after the mid-1970s. These may be due to the changing of climate condition, as during the 1940s–1970s, temperature decreased and precipitation increased, while after the mid-1970s, an opposite climate situation occurred with evident increasing in temperature and decreasing in precipitation. Usually, warmer and dryer climate condition is not favor for carbon absorption by biosphere and even induces net carbon release from soil, while cooler and wetter condition may induce more carbon sink. Our model results show that the net carbon flux is particularly dependent on moisture / precipitation effect despite of temperature effect. The changing of climate in the past century may be a possible factor inducing increases in carbon sink in addition to CO2 and N fertilizer. This research was funded by CAS One Hundred Talents project and Knowledge Innovation Project of CAS(KZCX2-201).  相似文献   

15.
东亚夏季风可显著影响中国季风区气候变化,但是季风区植被净初级生产力(NPP)对夏季风气候变化的响应机理尚不明确。利用大气—植被相互作用模型(AVIM2)模拟了中国季风区植被NPP,分析了其与夏季风指数的相关关系,探讨了其对夏季风变化的响应机理。研究发现,我国南、北方植被对夏季风强度变化的响应方式和机理并不相同。强夏季风年北方植被NPP增加,而南方植被NPP减少。东亚夏季风对中国华北平原植被生长季NPP的作用主要是通过影响该地降水量实现的;京、津、冀地区植被NPP受东亚夏季风带来的气温和降水量变化的叠加影响,因而成为北方对夏季风变化最敏感的区域。东亚夏季风对我国南方江苏、安徽、湖南、湖北、江西植被NPP的作用是通过影响太阳辐射实现的,强夏季风导致太阳辐射减弱,从而使各省植被NPP减少。南方沿海的浙江和福建,强季风年带来的弱太阳辐射和低温是该地植被NPP减少的原因。广东、台湾植被NPP则主要受强夏季风带来的低温影响。  相似文献   

16.
陆地生态系统碳汇显著降低大气CO2浓度上升和全球变暖的速率,受人类活动和气候变化的影响,陆地生态系统碳通量具有强烈的时空变化,其估算结果仍存在较大的不确定性,不同因子的贡献尚不清晰。为此,利用遥感驱动的陆地生态系统过程模型BEPS模拟分析了1981—2019年全球陆地生态系统碳通量的时空变化特征,评价了大气CO2浓度、叶面积指数(Leaf Area Index,LAI)、氮沉降、气候变化对全球陆地生态系统碳收支变化的贡献。1981—2019年全球陆地生态系统总初级生产力(Gross Primary Productivity,GPP)、净初级生产力(Net Primary Productivity,NPP)和净生态系统生产力(Net Ecosystem Productivity,NEP)的平均值分别为115.3、51.3和2.7 Pg·a-1(以碳质量计,下同),上升速率分别为0.47、0.21和0.06 Pg·a-1。全球大部分区域GPP和NPP显著增加,NEP显著上升(p<0.05)的区域明显少于GPP和NPP。1981—2019年,全球NEP累积为105.2 Pg,森林、稀树草原及灌木、农田和草地的贡献分别为76.4、15.8、9.4和3.6 Pg。CO2浓度、LAI、氮沉降和气候变化各自对NEP的累积贡献分别为58.4、20.6、0.7和-43.6 Pg,全部4个因子变化对NEP的累积贡献为39.8 Pg,其中CO2浓度上升是近40 a全球陆地生态系统NEP上升的主要贡献因子,其次为LAI。  相似文献   

17.
The coupled models of both the Global Ocean-Atmosphere-Land System (GOALS) and the Atmosphere-Vegetation Interaction Model (GOALS-AVIM) are used to study the main characteristics of interannual variations. The simulated results are also used to investigate some significant interannual variability and correlation analysis of the atmospheric circulation and terrestrial ecosystem. By comparing the simulations of the climate model GOALS-AVIM and GOALS, it is known that the simulated results of the interannual variations of the spatial and temporal distributions of the surface air temperatures and precipitation are generally improved by using AVIM in GOALS-AVIM. The interannual variation displays some distinct characteristics of the geographical distribution. Both the Net Primary Production (NPP) and the Leap Area Index (LAI) have quasi 1-2-year cycles. Meanwhile, precipitation and the surface temperatures have 2--4-year cycles. Conditions when the spectrum density values of GOALS are less than those of GOALS-AVIM, tell us that the model coupled with AVIM enhances the simulative capability for interannual variability and makes the annual cycle variability more apparent. Using Singular Value Decomposition (SVD) analysis, the relationship between the ecosystem and the atmospheric circulation in East Asia is explored. The result shows that the strengthening and weakening of the East Asian monsoon, characterized by the geopotential heights at 500 hPa and the wind fields at 850 hPa, correspond to the spatiotemporal pattern of the NPP. The correlation between NPP and the air temperature, precipitation and solar radiation are different in interannual variability because of the variation in vegetation types.  相似文献   

18.
针对《巴黎协定》提出的温控目标,利用耦合模式比较计划第五阶段(CMIP5)模式在RCP2.6、RCP4.5和RCP8.5情景下的模拟结果,初步分析了全球升温情景下陆地生态系统净初级生产力(NPP)相对于参考时段(1986—2005年)的变化,重点分析了1.5℃和2℃升温时NPP相对于参考时段的变化量,并探讨了大气CO2浓度、气温、降水和辐射的变化及其对NPP变化的影响。CMIP5基于各典型浓度路径模拟的全球陆地生态系统NPP均呈增加趋势,且NPP增加量与升温幅度成正比。在相同的升温幅度下,基于各典型浓度路径模拟的各环境因子和NPP的变化量较为一致。陆地生态系统NPP总量增加主要由大气CO2浓度上升驱动,其他环境因子的影响相对较弱。中国东南部、非洲中部、美国东南部和亚马孙雨林西部地区NPP增加最明显。NPP变化量的空间格局主要由大气CO2浓度增加和升温控制,降水和辐射的影响相对较小。具体而言,大气CO2浓度上升对中低纬度的NPP变化贡献最大,对北方高纬度地区NPP变化贡献较小。温度上升有利于促进北方高纬度地区和青藏高原地区NPP,但对中低纬度地区的NPP有较强的抑制作用。鉴于既有典型浓度路径和地球系统模型的限制,本文对未来升温情景下陆地生态系统NPP的预估仍存在较大的不确定性,需要在未来的研究中进一步改进。  相似文献   

19.
In Part I, the authors succeeded in coupling the spectral atmospheric model (SAMIL_R42L9) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS) with the land surface model, Atmosphere-Vegetation-Interaction-Model (AVIM) and analyzed the climate basic state and land surface physical fluxes simulated by R42_AVIM. In this Part Ⅱ, we further evaluate the simulated results of the biological processes, including leaf area index (LAI), biomass and net primary productivity (NPP) etc. Results indicate that R42_AVIM can simulate the global distribution of LAI and has good consistency with the monthly mean LAI provided by Max Planck Institute for Meteorology. The simulated biomass corresponds reasonably to the vegetation classifications. In addition, the simulated annual mean NPP has a consistent distribution with the data provided by IGBP and MODIS, and compares well with the work in literature. This land-atmosphere coupled model will offer a new experiment tool for the research on the two-way interaction between climate and biosphere, and the global terrestrial ecosystem carbon cycle.  相似文献   

20.
The CASA (Carnegie-Ames-Stanford) ecosystem model has been used to estimate monthly carbon fluxes in terrestrial ecosystems from 2000 to 2009, with global data inputs from NASA??s Terra Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation cover mapping. Net primary production (NPP) flux for atmospheric carbon dioxide has varied slightly from year-to-year, but was predicted to have increased over short multi-year periods in the regions of the high-latitude Northern Hemisphere, South Asia, Central Africa, and the western Amazon since the year 2000. These CASA results for global NPP were found to be in contrast to other recently published modeling trends for terrestrial NPP with high sensitivity to regional drying patterns. Nonetheless, periodic declines in regional NPP were predicted by CASA for the southern and western Untied States, the southern Amazon, and southern and eastern Africa. NPP in tropical forest zones was examined in greater detail to discover lower annual production values than previously reported in many global models across the tropical rainforest zones, likely due to the enhanced detection of lower production ecosystems replacing primary rainforest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号