首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 400 毫秒
1.
高寒地区日光温室地温变化及预报   总被引:2,自引:0,他引:2  
利用2012年4月至2013年3月青海大通县日光温室内外地温、气温资料和大通县气象站人工观测资料,分析了高寒冷凉地区不同天气类型下日光温室地温变化规律。结果表明;研究区日光温室内日地温呈正弦曲线变化,晴天变化幅度最明显,阴天最小,地温变幅为地表〉5 cm〉10 cm〉15cm〉20 cm;室内地表、10 cm和20 cm平均地温月变化呈波形变化,最大值出现在7月,最小值在12月;随着深度增加,平均地温年较差逐渐减小;晴天、多云天、阴天不同深度地温平均日较差分别为9.6、8.3、6.1℃;地温日垂直变化仅在14时随着深度增加逐渐下降;除晴天室内最高温度外,其余温度要素与地温之间存在极显著正相关关系;建立的日光温室内10 cm最低温度预报方程和地表最低温度预报模型,可以在业务服务中应用。  相似文献   

2.
利用连云港赣榆区气象观测站2014年逐时的草面温度、0 cm地面温度和气温观测数据,分析讨论了该地区三要素的月平均值、月极端最高、最低值特征以及草面温度与0 cm地面温度、气温在不同气象条件下三者之间的相互关系。结果表明:从全年变化来看,逐月平均值0 cm地温草温气温;逐月极端最高值0 cm地温草温气温;逐月极端最低值草温0 cm地温气温。在晴天和阴天多云状况下草温与0 cm地温、气温呈明显的正相关,阴天较晴天变化幅度小;阴雨天气时白天草温与气温明显下降,而0 cm地面温度降幅平缓且温度较高;有降雪时0 cm地面温度高于草温和气温,且变化较为平缓。用草温比用0 cm地温和气温能更好地判定霜的出现。  相似文献   

3.
寿光日光温室温湿度变化特征分析   总被引:1,自引:0,他引:1  
王晓立  王文  袁静 《山东气象》2014,34(1):49-53
对寿光日光温室秋、冬、春季节不同天气状况的温湿度变化特征、通风及增温时段进行分析。结果表明,温室内气温在不同天气状况下有明显的日变化,晴天、多云、阴天时日最高气温分别在24~35℃,22~30℃,20~25℃,最高值均出现在13:00前后;日最低气温分别在9~16℃,11~20℃,09~12℃,最低值出现在06:00—07:00。温室内相对湿度在白天降低,夜间升高,晴天与多云天气时,日相对湿度最大值在75%~86%,最小值在20%~50%,阴天时,最大值在85%~90%,最小值在40%~60%。晴天时,秋、冬、春季节的适宜通风时段分别在11:00—15:00、13:00前后、12:00—15:00,多云天气的适宜通风时段分别在12:00—15:00、13:00前后、12:00—13:00,阴天时,在中午前后进行通风排湿。晴天与多云天气时,秋、冬季节的增温时段分别在00:00—07:00、00:00—09:00,阴天时冬季增温时段在19:00—次日10:00。经过对温室环境进行调控,有效促进温室作物的增产增收。  相似文献   

4.
南岭山地高速公路路面温度变化特征分析   总被引:5,自引:1,他引:5  
使用2003年3月至2005年8月南岭山地京珠高速公路粤境北段云岩路段3套自动气象站的逐分钟路面温度、地温、气温、湿度、风向、风速等气象资料,分析研究了南岭山地高速公路的路面温度特征及其与天气状况、气温、风速等气象条件的关系,并讨论了地形对南岭山地高速公路路面温度的影响。研究结果表明,南岭山地高速公路晴天和多云时的路面温度日变化明显,与辐射过程密切相关。路温与气温、地温的差异在晴天午后最为明显。晴天时路温、地温、气温的年变化趋势比较一致,路温与地温之间保持着明显的温差;多云天气时路温与地温的差值明显缩小,阴天时路温与地温的差值非常小。地形对路面温度有明显影响,高海拔地区路面温度相对较低,南岭北坡路面温度明显高于南坡,与局地小地形有关。高温过程时路面温度最高接近60℃,地温也超过50℃,持续高温对行车安全、路面和路基结构均有很大威胁。  相似文献   

5.
日光温室中加扣小拱棚的温湿度效应   总被引:1,自引:0,他引:1  
利用2013年1-2月河北省清河县日光温室中加扣小拱棚后温湿度观测资料和气象站观测资料,采用数理统计法,对不同天气条件下小拱棚温湿度变化特征和温湿度效应进行分析。结果表明:在晴天、少云-多云天气条件下小拱棚内日最高气温分别达30.0 ℃和25.0 ℃以上,且分别比小拱棚外高1.3-6.6 ℃和1.0-4.5 ℃;在晴天、少云-多云天气条件下小拱棚内日最低气温分别为4.0-11.0 ℃和6.0-14.0 ℃,比小拱棚外高0.0-1.5 ℃。小拱棚内日最小空气相对湿度为50%左右,比小拱棚外高2%-11%,日最大空气相对湿度与小拱棚外持平或略高;小拱棚内0.0 m气温和空气相对湿度日变化幅度均小于小拱棚内0.5 m。连续寡照天气时,小拱棚内气温为5.0-15.0 ℃,空气相对湿度全天为85%以上,温度、湿度变化幅度小且与小拱棚外接近或略高。总体来讲,日光温室加扣小拱棚在晴天或少云-多云天气时具有较好的增温保湿效果,但在寡照天气时增温效果不明显。温室中小拱棚内和小拱棚外温度差、湿度差在白天尤其中午前后较大,而在夜间内外相差较小或无差异。在管理上,应注意预防晴天中午前后小拱棚内温度过高引起的灼伤和寡照天气时低温高湿引起的冻害和病害。  相似文献   

6.
为走出农民增收和农业增效困境,武威市确立了发展日光温室生产的主体生产模式,通过气象观测对引进和推广的新型日光温室进行有益探索,重点对比以土质墙体和草砖为后墙的2种温室冬季的保温性。结果表明:(1)与温室外温度相比,2种结构温室内的温度明显偏高,且土墙保温蓄热效果明显好于草砖。其中,土墙温室较草砖温室旬平均气温偏高1.8~1.9℃,旬极端最低气温偏高2.8~2.9℃,旬平均地温偏高0.9~4.1℃;(2)从不同时段看,土墙蓄热冷却速度明显低于草砖。冬季盖帘时段,土墙温室内气温较草砖偏高3.4~10.8℃,平均偏高3.1℃,地温偏高0.1~7.4℃,平均偏高3.5℃;揭帘时段,土墙温室内气温较草砖偏高4.1~14.7℃,平均偏高4.2℃,地温偏高0.3~7.7℃,平均偏高3.7℃;(3)从典型天气条件看,夜间及清晨土墙室内气温较草砖偏高幅度晴天阴天雪天;白天偏高幅度晴天的最大,雪天的次之,阴天相差不大。土墙温室内地温变化幅度较小,晴天和阴天草砖温室内地温变化幅度略大,且土墙温室内地温高于草砖,雪天相差最大;(4)2种温室结构对产量的影响效果显著,辣椒总产量土墙温室高于草砖温室18%。  相似文献   

7.
大棚小气候特征及其与大气候的关系   总被引:11,自引:0,他引:11  
刘可群  黎明锋  杨文刚 《气象》2008,34(7):101-107
为了提高大棚揭闭膜气象服务的针对性,对武汉城郊冬春季棚内外气温、地温进行了逐时对比观测试验,利用相关分析及逐步回归分析方法,分3种天气类型对棚内气温、地温观测数据进行了计算分析.结果表明,在晴好天气下大棚、双层膜最高气温分别比棚外大气最高气温高20、24℃左右,夜间温度分别比棚外大气高0.8~3.5℃、3.5~6.5℃,棚内温度日较差在晴好天气下高达30~35℃,气温变化剧烈,一天内可能既要防范高温热害,又要防御低温危害.白天棚内气温与大气温度、太阳高度角关系密切,夜间气温以及10cm地温与大气温度相关显著,并由此建立了棚内气温、地温统计数学模型.利用该模型可以准确地推算或预测大棚内逐时气温、地温变化,为菜农提供大棚揭闭膜气象服务.  相似文献   

8.
荔枝越冬期间冠层气温与大气温度关系的初步分析   总被引:2,自引:0,他引:2  
谭宗琨  何鹏  尤明双  杨鑫  欧钊荣  黄兴春 《气象》2009,35(12):102-108
基于野外实测数据,按晴天、阴天、雨天、多云到晴等天气类型,分析2007/2008年、2008/2009年冬季荔枝果园大气温度、冠层气温与观测站大气温度的变化关系,结果表明:晴天荔枝冠层温度昼夜变化最为剧烈,多云到晴天气次之,阴天和雨天冠层大气温度变化相对平缓;果园和观测站大气温度昼夜变化同样与天气类型有关.按天气类型分别建立的观测站与荔枝冠层之间的夜间、白天和全天大气温度线性、曲线回归关系模型表明:阴天和雨天模型效果好于多云到晴、晴天天气,夜间模型好于全天和白天.这一结果对应用观测站大气温度开展荔枝寒害冻害监测有参考作用.  相似文献   

9.
为定量研究公路对气温观测的影响,本文使用2014年1—5月在陕西省开展的两组公路观测试验的逐分钟温度、风向、风速等气象资料,对比分析了合阳县国道和渭蒲高速公路在不同季节、不同天空状况以及不同背景风速条件下对周围环境气温观测的影响程度和影响距离。试验结果表明:公路对周围的环境温度有一定的增温影响,合阳国道对环境温度的增温影响至75m,增温效应达0.25~0.4℃。高速公路的增温影响至125m,增温效应达0.2~0.4℃。冬季,两条公路白天增温效应较夜间明显,春季,高速公路夜间增温更明显。晴天、多云天气比阴天、降雨天气增温程度大。公路对气温的增温影响存在风速阈值,当风速小于对应阈值时,增温效应明显。公路上来往车流量对气温有一定的叠加增温影响,合阳国道白天车流量150~350辆,叠加增温效应0.05~0.1℃,蒲渭高速白天车流量2000~3500辆,叠加增温效应0.16℃。  相似文献   

10.
该文选取了2010—2015年贵州省贵阳站的逐日最高气温、总云量、降水量、湿度等资料,统计不同天空状况下的日最高气温的变化特点,并采用SPSS逐步回归筛选出影响最高气温的关键因子,建立回归模型。得出:①贵阳站阴雨天气出现频率要远多于晴和多云天气,尤其是冬春季,晴和多云天气多出现在夏秋季。在同一月份,晴好天气下和阴雨天气下,平均日最高气温有较大的差异,冬春季差异最大,平均最高相差15℃;②影响因子中前1 d日最高、最低气温及地面最高、最低温度与日最高气温的相关性较高,其中相关性最高的因子为前1 d日最高气温,相关性最高的季节为秋季;③在晴和多云天气下时,前1 d日最高气温对日最高气温的影响最大,而在阴天和雨天天气下时,则是前1 d日最低气温的影响最大。在不同的天空状况下,晴天天气下的拟合效果最好,估计误差值都在2℃以内,从季节上来看,夏季的拟合效果最好,平均估计误差值为1.6℃。  相似文献   

11.
不同下垫面条件下土壤含水量时空变化特征的对比分析   总被引:6,自引:1,他引:6  
根据淮河三站1998-05-21-08-31逐日土壤水分6层观测资料和黑河1991-06-20-08-21、1990-12-17-1991-02-15逐日土壤水分4层观测资料,分析了邻近绿洲的沙漠区、河网区(湿润区)几种典型下垫面土壤水分含量的时空变化特征。结果表明,不同类型的下垫面条件下,夏季土壤水分在湿润研究区呈明显的单峰偏态分布,且以β分布拟合效果为最好;而在邻近绿洲的沙漠研究区则呈多峰分布,冬季呈Γ分布,且湿润的研究区域夏季土壤水分在时间上呈显著的10-25d的周期变化。  相似文献   

12.
简要比较了中国科学院大气物理研究所对2005年夏季中国降水跨季度预测与实况的异同,并对2005年夏季我国主要雨带及降水偏少区的形成与东亚热带、副热带以及中高纬度大气环流系统的配置进行了分析。对2005年夏季西太平洋副高的异常活动预测不好,这是造成跨季度降水预测有失误之处的主要原因之一。2005年夏季在亚洲对流层中高层,沿着副热带急流轴准静止Rossby波有几次能量传播过程,西太平洋副高的北抬与西伸与副热带急流中Rossby波的活动强度有一定的对应关系,因而产生了亚洲不同地区高影响性的灾害性天气。  相似文献   

13.
国内民航机场主要使用的雨量观测设备为芬兰维萨拉公司生产的RG13型雨量传感器,为保证雨量测量数据的真实可靠,对其测量结果的不确定度分析很有必要。根据自动气象站现场校准方法,分别进行大雨强和小雨强的重复测试,并依据JJF1059.1-2012测量不确定度的评定与表示要求,进行A类不确定度评定。分析测量过程中的B类不确定度来源,进行B类评定,最终给出扩展不确定度。结果表明:在小雨强下,测量不确定度为U95=0.17mm,包含因子k=2。在大雨强下,测量不确定度为U95=0.16mm,包含因子k=2。该研究完善了雨量传感器的现场校准工作流程,对雨量传感器测量结果的可信度评定具有参考价值。  相似文献   

14.
热带气旋眼墙非对称结构的研究综述   总被引:2,自引:0,他引:2  
热带气旋的眼墙非对称结构与其发展过程密切相关。在热带气旋移动过程中,非对称风场伴随着边界层内非对称摩擦而引起的辐合,影响着热带气旋眼墙内的对流分布。此外,风垂直切变作为影响热带气旋强度的重要因子,将上层暖心吹离表层环流,引起眼墙垂直运动的非对称,导致云、降水在方位角方向的非均匀分布。当存在平均涡度的径向梯度时,罗斯贝类型的波动可以存在于涡旋内核区域,影响眼墙非对称结构。海洋为热带气旋提供潜热和感热形式的能量,是热带气旋发展的重要能量来源,关于海洋如何影响热带气旋眼墙非对称结构的相关研究较少。文中着重回顾了热带气旋与海洋相互作用的研究成果,并提出海洋影响热带气旋眼墙非对称结构的机制。海洋对热带气旋最显著的响应特征是冷尾效应,该效应通过降低海表温度,减少海洋向大气输送的潜热和感热,从而影响热带气旋眼墙非对称结构。此外,海浪改变海表粗糙度,通过边界层影响移动热带气旋的眼墙结构。  相似文献   

15.
从纵横两个方面对乌鲁木齐市空气污染现状进行了系统分析,包括与全国其它重点城市之间的比较分析、季节变动分析和趋势变动分析。  相似文献   

16.
利用玉屏国家地面气象观测站1961—2016年逐日平均气温资料,采用《气候季节划分》(QX/T15—2012)方法,对玉屏县四季起始日期及长度进行分析。结果表明:(1)玉屏县常年四季起始日期:入春3月5日,入夏5月23日,入秋9月22日,入冬11月28日;四季长度:春季79 d,夏季122 d,秋季67 d,冬季97 d。(2)56 a来玉屏县春季起始日期呈提前趋势,长度呈增加趋势,两者均在20世纪90年代前后出现了转折,但未发生气候突变;夏季起始日期及长度趋势变化不明显;秋季起始日期呈推后趋势,长度变化不明显;冬季起始日期变化不明显,长度呈减少趋势;春季长度增加、冬季长度减少主要为春季起始日期提前所致。(3)玉屏县四季起始日期的年际变幅大,起始日期比常年偏早(晚)连续2候以上的异常年份,春季为23%,夏季为27%,秋季为32%,冬季为25%。(4)玉屏县春季开始后出现低于季节指标≥1候的概率达41%,表明玉屏县春季出现倒春寒天气的概率很大。(5)比较气象行标法与稳定通过法的四季起始日期及长度,气象行标法对玉屏县的四季划分更能满足于农业生产的需要。  相似文献   

17.
对1959—2000年广西汛期(4~9月)暴雨的年、月分布和广西汛期暴雨天气过程的季节分布及主要影响天气系统进行深入分析,得到了广西汛期暴雨的若干重要特征,对广西汛期划分提出了改进意见。  相似文献   

18.
基于球载式下投北斗探空仪测风观测试验,建立了针对下投式的测风试验评估方法.试验结果表明上升段北斗测风的准确度接近RS92探空仪的探测准确度要求,两者一致性较好;下降段RS92测风误差基本上与上升段的属于同一量级水平,下降初期测风数据在使用时需要做预处理或者有效控制;下降段BD探空仪测风误差与下降段RS92的基本相当,除了球炸初期外,基本上接近WMO的测量要求,此外初期的急速下降对导航定位测风提出了更高的技术要求.整体而言,球载式下投探空观测在时间上可以实现对原有的1次探空进行加密,在空间上可以增加1个区域的探测,并为对现有探空站网分布进行合理优化提供依据,具有良好的应用前景.  相似文献   

19.
The global UK Met office Unified Model (UM) is currently operational at National Centre for Medium Range Weather Forecasting (NCMRWF), the global model named as NCUM. An inter-comparison of two different versions of NCUM has been carried out for simulating the track and intensity of Tropical Cyclones (TCs), which formed over the Bay of Bengal (BoB). For this purpose, two series of numerical experiments named as NCUM25 (New Dynamical core with NCUM N512 resolution) and NCUM17 (ENDGame core with NCUM N768 resolution and upgraded physics and data assimilation scheme) are carried out with seven different initial conditions (ICs) for two TCs. The results suggested that the location, intensity, and vertical structure of the TCs are reasonably well predicted by the NCUM17 over the NCUM25. The Direct Position Error (DPE) and landfall error of TCs are reduced in the NCUM17 in comparison to the NCUM25 for all initial conditions. The mean DPEs and intensity error are reduced by 21–41% and 18–21% in NCUM17 over NCUM25 in both the cases respectively. Improvements in mean landfall position errors are shown to range from 43 to 65% in the NCUM17 as compared to the NCUM25. The mean statistical skill scores for rainfall are considerably improved in NCUM17.  相似文献   

20.
以全天空数字成像仪的等角投影成像原理为基础,将云型简化为正方体及圆柱体云体。模拟了相同云体在不同空间位置的移动轨迹情况,对其所占面积变化(云量)进行了计算,并对云在移动过程中云体侧面成像情况做了分析研究。结果表明,云量随空间位置变化情况与云的宽高比相关,当宽高比大于某一值时云量随天项角(云所处位置)的增大先增大而后减小,反之则随着天顶角的增大而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号