首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
利用常规观测、加密站逐时的降水、NCEP/NCAR再分析资料和卫星资料,使用天气动力学诊断方法,分别分析了锋生及其次级环流对北京7.21暴雨过程中最大降水增幅和最大降水的影响。结果表明,北京地区的降水增幅和最大降水发生时刻并不一致。21日14时为北京最大降水增幅时刻,而次大降水增幅时刻的19时却为北京降水最大时刻。北京降水不论是增幅最大还是降水最大都与锋生处于北京的具体位置有关。21日14时,伴随着锋生函数正值区伸展到北京地区,其总锋生函数开始增大,此时高空急流导致的次级环流的上升支与冷锋前的上升支重合,使得地面锋前形成一深厚的上升运动,北京地区出现最大降水增幅;但在北京降水最大时刻,锋生函数大值中心移动到北京上空,其总锋生函数达到最大,在急流-锋系所产生的次级环流中,主要表现为在暖区一侧有强烈的上升运动,这和经典的急流-锋系所揭示的次级环流并不相同。同时,来自孟加拉湾从高原西侧经过河套地区到达北京的准"s"型异常水汽通道,则为北京7.21最大降水增幅时刻提供了良好的水汽条件。而北京最大降水时刻,南海水汽通道成为主要水汽来源,来自孟加拉湾的水汽输送则明显减弱。  相似文献   

2.
北京“7.21”特大暴雨环流形势极端性客观分析   总被引:14,自引:3,他引:11  
2012年7月21日(简称“7.21”),北京发生了自1951年以来最强的暴雨事件。利用倾斜旋转T模态主成分分析法和美国国家环境预报中心/美国国家大气研究中心再分析资料,探讨了北京“7.21”特大暴雨的大尺度环流形势的极端性。结果表明,北京“7.21”暴雨日所属的大尺度环流型在1951—2012年夏季出现的频率为10.9%,而在“7.21”同类环流型中暴雨出现的概率为4.51%。和同类暴雨日平均场相比,“7.21”暴雨日当天西太平洋副热带高压西伸更强,北京地区对流层低空急流更强,并伴随环境大气中极端充沛的可降水量和较大的风垂直切变。在“7.21”同类环流型下的621 d中,“7.21”暴雨日北京南侧的低空急流排在第54位,北京局地风垂直切变排在第209位,可降水量排在第8位,显示出其在低空急流和可降水量上的极端性。1951—2012年夏季,具有“7.21”暴雨日同类环流形势、且925 hPa低空急流和可降水量均达到或超过“7.21”暴雨日值的个例有3次,相当于每21年发生一次。  相似文献   

3.
对流层高层偏北气流在梅雨暴雨中的作用   总被引:11,自引:0,他引:11  
翟国庆 《气象学报》1998,56(1):68-76
文中对江淮梅雨暴雨过程中的高低空流场特征及物理过程进行分析.结果表明:对流层上部青藏高原东侧常有高空偏北大风轴汇入南亚东风急流中.在这支强北风轴北端发现高空辐散和辐散的增长.亦即有利于低层辐合上升的持续、发展和加强;表明了低层西南急流与高空青藏高压东侧的偏北强风轴之间的次级环流圈,有利于梅雨暴雨的持续.  相似文献   

4.
从变形场驱动锋生及通过锋生引起倾斜涡度发展的角度对变形场在北京“7.21”暴雨发生、发展过程中的可能作用机制进行了初步探讨。诊断结果发现:北京地区降水产生时,变形向量与等位温线走向一致或有较小夹角,北京地区有较强的变形场局地锋生过程。锋生函数分析发现,变形项对引发暴雨的低层锋生有重要贡献。锋生能够引发大气动力、热力结构的调整,伴随大气锋生过程的高空急流加强和转竖使得北京地区处于高空急流入口区右侧的辐散区中,其带动低层空气辐合,有助于暴雨的加强维持。分析还发现,“7.21”暴雨过程中,垂直涡度存在爆发性发展,尤其是锋面降水阶段,而大气斜压度的增长趋势与垂直涡度增长趋势十分一致。分析全型涡度方程中与变形场有关的斜压度个别变化项发现,与变形场相关的垂直涡度驱动项异常正值区与垂直涡度爆发性增长区相对应,表明变形场在北京“7.21”暴雨过程中对垂直涡度发展有重要贡献。基于变形场沿其压缩轴方向气流汇合的特点,进一步分析了加入水汽作用的水汽通量变形场与暴雨发生、发展的关系。分析结果发现,低层水汽通量变形场的正值区与暴雨具有很强的相关,且水汽通量变形场包含两部分,一部分为比湿平流,其对未来暴雨区位置有很好的指示意义;一部分为变形场项,其对水汽通量变形场分布起主要贡献。  相似文献   

5.
廖晓农  倪允琪  何娜  宋巧云 《气象学报》2013,71(6):997-1011
2012年7月21日北京发生了历史罕见的特大暴雨,最大累计降水量达到541 mm,最大雨强100.3 mm/h,强降水持续10多个小时,造成了巨大的损失。使用常规观测资料和NCEP再分析资料在讨论环境大气湿度条件与特大暴雨关系的基础上,分析了实现充沛的水汽远距离输送到华北并在北京上空积累的天气尺度动力过程及其形成的原因。结果表明,“7.21”特大暴雨产生在大气异常潮湿的环境中。在暴雨发生时,比湿最大值达到19 g/kg,而且,对流层中下层的比湿比北京区域性暴雨历史个例高40%。产生长时间强降水的重要原因是边界层以上高湿的特征在暴雨产生的过程中一直维持。充沛的水汽被一支从低纬度一直贯通到40°N附近的低空偏南气流从孟加拉湾和中国南海向北输送。偏南风持续增大形成低空急流,增大了水汽的输送。而且,随着急流核向东北方向移动逐渐靠近北京,在北京上空对流层低层产生了-17.7 g/(hPa·m2·s)异常强烈的水汽通量辐合。同时,高空强烈辐散与低空辐合的耦合不断加强,不仅增加了低层水汽在暴雨区汇集,而且也通过增强垂直速度将更多的潮湿空气向上输送,使高层大气湿度增大。通过上述两个天气尺度动力过程,实现了水汽的远距离输送,并在暴雨区上空强烈辐合,导致北京地区水汽异常充沛。输送水汽的偏南风持续增大的原因主要有两个:一是台风外围环流的影响;二是在海上副热带高压稳定维持的情况下,大陆上低压加强、东移,造成东西向气压梯度增大,在地转偏向力的作用下,南风增强。最后,得到了实现水汽远距离输送的天气尺度动力过程机理模型。  相似文献   

6.
登陆热带气旋降水增幅的合成诊断分析   总被引:1,自引:0,他引:1  
利用NCEP/NCAR再分析资料,采用动态合成分析方法,对登陆后降水增幅类和非增幅类热带气旋的大尺度环流特征做了合成分析和动力诊断.结果表明:增幅类热带气旋处于强经向型环流之中,中高纬度为阻塞形势,高层有急流入口区南侧的强辐散,并与西风槽相互叠加;低层有急流和水汽通道的长时间联结;热带气旋东侧还有次级环流相伴.非增幅类热带气旋环流背景相对平直,高空辐散弱,无西风槽叠加;低空急流减弱迅速,且水汽通道较早出现断裂;无次级环流出现.增幅类热带气旋高层存在显著非地转运动,高层南风急流入口区的强次地转运动和降水增幅紧密相关.  相似文献   

7.
一次梅雨锋暴雨的中尺度对流系统及低层风场影响分析   总被引:2,自引:1,他引:1  
杨舒楠  路屹雄  于超 《气象》2017,43(1):21-33
本文利用常规气象观测资料,地面自动站加密观测资料和FY-2D、FY-2E卫星云图以及NCEP 1°×1°的FNL分析资料、EC 0.25°×0.25°的细网格模式数据等,对2015年6月15—18日梅雨锋暴雨过程的中尺度对流系统(MCS)活动特征、对流层低层风场对MCS发展的影响以及梅雨锋暴雨的垂直环流特征等进行了研究,结果表明:天气尺度梅雨锋上叠加的MCS的产生及向下游移动,以及其在安徽中部到江苏南部正涡度带作用下的发展增强,造成了江苏南部的局地强降水。强降水与中尺度低空急流核的位置吻合较好。在垂直方向上,高空急流入口区右侧与低空急流核左前方叠加,高低空急流耦合作用明显。在降水过程中,对流层低层具有较强的垂直风切变,有利于垂直涡度的增强和MCS的发展。对流层低层的垂直风切变也有利于不同源地的水汽在梅雨锋区汇集。梅雨锋北侧的干冷空气在对流层低(中)层以东北(西北)路径向锋区移动。南侧的暖湿气流沿西南路径移动、抬升,接近锋区后质点在上升过程中逐渐转向东移,在高空急流的抽吸作用下,快速向东流出,近地面层空气存在跨锋面环流。梅雨锋系统垂直方向上的次级环流是高层风场强烈辐散以及空气运动过程中质量补充和循环的结果。  相似文献   

8.
本文选取2018年7月31日(简称“7.31”暴雨)和2016年8月8日(简称“8.8”暴雨)两次东天山哈密地区强降水天气过程,利用NCEP/NCAR的FNL资料(0.25°×0.25°)、中国地面卫星雷达三源融合逐小时降水产品、新疆地区常规观测资料、FY-2G卫星产品,通过对暴雨期间锋生函数计算诊断,证实了两次强降水过程中尺度对流系统触发因子差异,取得如下主要结果:(1)“7.31”暴雨期间,500 hPa西太平洋副热带高压位置异常偏北,700 hPa暖舌沿副高南侧偏东急流向西北伸展,低层增暖增湿,暴雨区上空形成不稳定大气层结,多个中尺度对流系统在700 hPa低空急流前生成,向东北方向移动和发展。“8.8”暴雨期间,500 hPa西太平洋副热带高压位置异常偏西,对流云团在对流层低层西南急流前生成向东北方向移动。(2)对流层低层暴雨区暖锋锋生是“7.31”暴雨中尺度对流云团的触发因子,云团初生阶段对流触发主要是锋生水平散度项和由垂直运动发展引起的倾斜项决定,成熟阶段暖锋锋生主要由锋生形变项和倾斜项所致。低空东南急流的维持加强利于锋面次级环流发展,是造成中尺度对流系统长时间维持的主要原因。(3)“8.8”暴雨对流云团由对流层低层弱冷锋触发。对流云团发展初始阶段,对流层低层冷锋锋生主要由水平辐散项决定;对流云团成熟阶段,对流层低层冷锋锋生主要由倾斜项决定。低层切变线长时间维持和加强利于低层冷锋进一步锋生,是造成中尺度对流系统长时间维持的主要原因。  相似文献   

9.
大暴雨过程中与急流相关气块的三维运动分析   总被引:10,自引:3,他引:10  
陶祖钰  黄伟 《气象学报》1994,52(3):359-367
用48h三维轨迹分析和物理量诊断分析相结合的方法研究了1991年7月上旬的一次大暴雨过程及其与高低空急流的联系。结果表明,暴雨区高空的气块来自高空急流的入口区,并穿过急流中心到达急流的出口区。雨区上空的辐散和200hPa高空急流出口区气块的减速运动相联系。低层的暖湿空气来自于SSW气流,并在低空急流中心的前方辐合上升。高空辐散所引起的低层减压使低空急流加强和低层暖湿空气的加速运动。  相似文献   

10.
华南暖区一次暴雨中尺度系统的数值模拟   总被引:8,自引:4,他引:4       下载免费PDF全文
覃丽  寿绍文  冠聪  刘泽军 《高原气象》2009,28(4):906-914
为深入了解华南暖区暴雨产生的机制, 首先利用观测资料和卫星云图对2005年5月9日华南暖区一次暴雨过程进行天气分析, 然后利用MM5V3.6数值模式对该次暴雨过程进行了模拟, 利用模拟的输出结果分析了中尺度系统的结构特征和成因。结果表明, 这次华南南部暖区的暴雨区出现在低空急流出口区左侧的辐合区与高空急流入口区右侧的辐散区相迭置的区域; 中尺度对流云团是暴雨的直接影响系统, 系统中心上空偏南气流强烈垂直上升与在系统以南对流层高层下沉的气流构成垂直闭合反环流, 低层气流风速辐合对暖区暴雨系统的形成和发展起决定性的作用。较大的螺旋度可能是暖区暴雨及其中尺度系统发生、 发展的一种重要机制, 可用来判断降水系统的形成和移动。  相似文献   

11.
利用常规观测资料、自动站资料和多普勒雷达资料等,对2009年7月14日大连暴雨局部大暴雨过程进行详细分析。结果表明:这是一次暖锋大暴雨过程,高空河套槽北抬和北支槽尾段相叠加,中低层在渤海北部到大连地区形成涡旋环流,700 hPa气旋式较大曲率处在地面暖锋上空,大连地区位于地面气旋顶部即暖锋顶部,造成强降水的产生。强湿区,配合暖锋前低层辐合中心、高层辐散中心,为暖锋大暴雨天气提供水汽和动力条件。从雷达回波分析可以看出,暖锋前部45dBz的β中尺度反射率及速度场上“单牛眼”特征,是造成此次暴雨过程及短时暴雨的直接原因。VWP资料分析表明,低层东南急流与高层西南急流形成切变层的高度以及两支急流的强度变化,与暖锋对应并决定降水的强弱。  相似文献   

12.
一次持续大范围暴雨过程诊断分析   总被引:4,自引:2,他引:2       下载免费PDF全文
钱鹏  蒋薇  孔启亮  周勍  李建国 《气象科学》2012,32(2):188-193
利用常规观测资料、NCEP再分析资料等对2010年7月10—13日江苏持续大范围暴雨过程进行诊断分析。结果表明:持续渗透的冷空气和同时存在东西两股水汽通道是此次持续大范围暴雨过程产生的关键;高空急流的位置对暴雨的落区有明显的指示作用,而低空急流的强弱对降水量的大小起着决定性的作用。当高空急流南侧的急流风速等值线密集区在3个纬距内急流风速差达到10 m/s,同时低空急流中心达到12 m/s时,在两个急流带之间易产生区域性暴雨或区域性大暴雨天气;涡度和散度场的高低空中心与暴雨的落区有很好的对应关系;对高低空急流、涡度、散度等时间平均场的分析,可以判断持续大范围暴雨过程中区域性大暴雨的落区。  相似文献   

13.
两次副热带高压北侧暖锋暴雨动力热力诊断   总被引:3,自引:0,他引:3  
使用常规观测资料、自动气象站降水量以及NCEP FNL再分析资料,对黑龙江省两次副热带高压(简称副高)北侧暖锋暴雨过程(简称"0801"和"0803"过程)进行动力热力机制诊断分析。结果表明,两次暖锋暴雨过程,均有台风活动,造成副高西伸北抬,副高外围的西南低空急流向北输送大量高动量的暖湿空气。两次暴雨过程与高低空急流关系密切,"0803"过程中高低空急流均更强,暴雨区位于高低空急流耦合形成的垂直次级环流的上升支。"0801"过程,暴雨发生前大气对流不稳定,辐合抬升及次级环流上升气流的共同作用触发对流,促使不稳定能量释放,形成强降水。"0803"过程,暴雨期间大气对流稳定,锋区中层的CSI有利于降水强度的增强及维持,锋面强度更大,由锋面辐合抬升形成的上升运动范围更广,造成更大范围的强降水天气。在暴雨区上空由于凝结潜热释放而引起广义位温高值区向下伸展,强暖平流促使中低层湿斜压性显著增大,利于暖锋锋生。水汽散度通量和水汽垂直螺旋度能够较好地描述强降水过程,强降水区与水汽散度通量正值区及水汽垂直螺旋度负值区相对应。  相似文献   

14.
2013年浙江两次汛期暴雨过程对比分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用NCEP/NCAR再分析资料,对2013年4月29日(4.29)和6月6日(6.6)浙江两次汛期暴雨的天气形势场、热力动力和水汽条件进行对比分析,研究浙江暴雨的机理,为暴雨预报提供依据。结果表明:1)4.29暴雨影响系统高层为西风槽、低层为低涡;6.6暴雨高低层影响系统均为低涡。2)4.29暴雨高空西风急流强,垂直方向上存在正向环流圈,低层辐合对应高层辐散;6.6暴雨高空西风弱,垂直方向上无明显环流圈,散度场分布较复杂。3)4.29暴雨主要水汽来源为孟加拉湾、南海-西太平洋;6.6暴雨主要水汽来源为孟加拉湾、南海-西太平洋和东海。4)4.29暴雨过程中锋区呈东西走向,有较强冷空气侵入,而6.6暴雨过程中锋区呈东南-西北走向,只有较弱冷空气侵入。  相似文献   

15.
段汀  陈权亮  廖雨静 《气象科学》2022,42(2):152-161
2021年7月19—21日,郑州地区出现了罕见的极端暴雨天气,过程累计降水量达到了732 mm,引发了严重的城市内涝,造成了巨大的人员和财产损失。利用国家级自动观测站逐小时降水数据和欧洲中期天气预报中心第五代大气再分析资料(ERA-5)分析了郑州地区"21.7"极端降水过程的降水特征以及其影响系统。结果表明:此次降水过程降水量大,持续时间长,强降水范围集中在郑州及周边地区,强降水时段集中在20日14时以后,其中郑州站20日17时小时降水量达到了201.9 mm·h-1,超过了历史极值。降水过程中南亚高压东移,郑州位于200 hPa高空槽前,500 hPa副高加强西伸,与大陆高压对峙,郑州位于低压区形成低空辐合高空辐散的高低空配置。郑州低空850 hPa有东南急流发展,产生东风切变线同时伴随着地面辐合线影响郑州地区,东南急流也将西太平洋上的水汽输送至暴雨区,并在地形阻挡作用下在郑州地区汇集。低空急流与强降水在时间上有明显同步,急流在地形作用下产生的辐合抬升也在暴雨区形成强烈的垂直上升运动,对此次极端暴雨的产生和维持有明显的影响。  相似文献   

16.
四川盆地位于青藏高原的东侧,受其地理位置的影响,该地区的天气和气候复杂多变。尤其暴雨预报,是气象工作者一直面临的难题。本文利用欧洲中期天气预报中心ERA-Interim再分析资料、格点化的降水资料(CN05.1)以及常规气象观测站探空资料,从环流背景、水汽条件、动力和热力条件对比分析了2015年夏季四川盆地7月13~15日("7.13"过程)和8月16~18日("8.16"过程)两次暴雨过程的环境场,以期加深对四川盆地暴雨机制的认识。结果表明:1)相对稳定的大尺度环流形势为两次大暴雨发生发展提供了有利的背景场。2)两次过程均存在明显的高空急流和低空急流,并且"8.16"过程高空急流明显强于"7.13"过程,这也是两次过程降水强度存在明显差异的原因之一。"7.13"过程主要以低空北向急流输送孟加拉湾水汽到四川南部;"8.16"过程低空急流输送孟加拉湾水汽受四川东北部、重庆上空西南涡影响,主要以气旋性环流输送水汽到暴雨上空。3)从暴雨预报的指示意义上分析,两次暴雨过程大气均处于不稳定状态,假相当位温对于暴雨的强度和落区有较好指示。位涡扰动向低层传输,位涡的增大预示着强降水的发生。  相似文献   

17.
A heavy rainstorm named Beijing “7.21” heavy rainstorm hit Beijing on 21 to 22 July 2012, which is recorded as the most severe rainstorm since 1951. The daily precipitation amount in many stations in Beijing has broken the history record. Based on the NCAR/NCEP reanalysis data and precipitation observation,the large-scale conditions which caused the “7.21” heavy rainstorm are investigated, with the emphasis on the relationship between it and an equatorial convergence zone, Asian summer monsoon as well as the tropical cyclone over the ocean from the Philippines to the South China Sea (SCS). The results indicated that a great deal of southerly warm and wet moisture carried by northward migrating Asian summer monsoon provided plenty of moisture supplying for the “7.21” heavy rainstorm. When the warm and wet moisture met with the strong cold temperature advection induced by cold troughs or vortexes, an obviously unstable stratification formed, thus leading to the occurrence of heavy precipitation. Without this kind of intense moisture transport, the rainstorm only relying on the role of the cold air from mid- and higher- latitudes could not reach the record-breaking intensity. Further research suggested that the northward movement of an Asian monsoonal warm and wet moisture transport conveyor (MWWTC) was closely related with the active phase of a 30-60 day intra-seasonal oscillation of the Asian summer monsoon. During this time, the monsoon surge triggered and maintained the northward movement of the MWWTC. In addition, compared with another heavy rainstorm named “63.8” heavy rainstorm, which occurred over the Huaihe River Basin in the mid-August 1963 and seriously affected North China, a similar MWWTC was also observed. It was just the intense interaction of the MWWTC with strong cold air from the north that caused this severe rain storm.  相似文献   

18.
利用地面加密降水资料、NCEP fnl再分析资料和风云4A卫星TBB资料,对2020年7月5-8日长江中下游地区的连续性大暴雨过程进行了诊断分析。结果表明,这次连续性大暴雨过程是在有利的大尺度环流背景下,受切变线影响由列车型对流云团产生的。7月5-8日,亚洲中高纬度大气环流调整,贝湖的东阻高崩溃,带动中高纬度的中高层冷空气持续南下,在长江流域与北上的暖湿气流交汇,使得暴雨产生和发展;同时干冷空气的侵入加强了暴雨过程的对流性不稳定,对暴雨的加强和发展起到重要作用。暴雨期间,低空西南急流的增强提供了有利的水汽输送条件,高空急流增强并发生“倾斜”,高低空急流的耦合在长江中下游上空形成了强烈的高空辐合与低空辐散,使得旺盛的上升运动延伸至对流层高层。在有利的环流背景条件下,中尺度对流系统的“列车效应”是导致本次大暴雨的直接原因。  相似文献   

19.
2007年7月7—9日淮河流域梅雨锋雨带特征分析   总被引:3,自引:3,他引:0       下载免费PDF全文
王勇  丁治英  李勋  王群 《气象科学》2012,32(1):45-52
针对2007年7月7—9日发生在淮河流域的暴雨,采用NCEP1°×1°客观分析资料、6h地面观测降水资料,对此次降水过程中雨带发生、发展进行天气动力学分析。结论如下:(1)暴雨区位于高空急流入口区南侧、南亚高压辐散场东侧,该区域对流层高层为反气旋控制区,有利于低层低值系统的发展;(2)处于非热成风不平衡状态下的低空强急流带形成以后,对于雨带分布以及暴雨发展产生重要影响;(3)视热源、视水汽汇廓线在垂直方向上的变化,体现了水汽凝结潜热释放加热环境大气的作用;(4)基于p坐标系的比湿垂直输送正值带可以较好地示踪雨带移动。  相似文献   

20.
利用中国气象局上海台风研究所热带气旋最佳路径数据、MICAPS常规资料、NCEP 1°×1°再分析资料和FY-2G相当黑体亮温资料,分析2018年8月17日02时至19日14时因登陆热带气旋“温比亚”影响中国黄淮中部连续2 d多的暴雨成因。结果表明:中国黄淮中部短时强降雨站次多、强度大,除了对流云的前或后边界、“列车效应”、核心区与它们之间的合并能导致短时强降雨之外,非对流云也可导致强降雨。17日黄淮中部及以南,暴雨偏在“温比亚”移动路径右侧,中层倒槽偏在低层倒槽西侧有利于触发黄淮中部强降雨。18日暴雨主要中尺度影响系统为“温比亚”北侧中、低层倒槽和偏东风急流,以及热带气旋本体环流和弱冷空气。水汽925 hPa辐合、400 hPa辐散加大,中低层温湿能量增加,是黄淮中部暴雨增幅的原因,风的垂直切变加大对强降雨具有较好的指示作用。18日20时开始渤海北岸西南风高空急流形成,低层倒槽东侧偏南气流加强北上,高、低空环流耦合导致山东北部等地暴雨发展,黄淮中部降雨则明显减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号