首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
对不同优质小麦品种不同播期的产量结构分析结果表明:河北-8901的各种产量结构表现出最为稳定的变化规律,即不同的播期处理对最后产量的影响度相对较小;郑麦-9405和郑麦-9023的产量结构在不同的播期表现出较大的波动。  相似文献   

2.
播期对浚单20夏玉米生长状况及产量影响分析   总被引:1,自引:0,他引:1  
通过对浚单20玉米新品种进行分期播种试验,研究不同播期对浚单20各个阶段生长状况及产量形成的影响.首先对各播期发育阶段持续日数进行差异性检验,结果表明,夏玉米全生育期日数随播期推迟而缩短.其次,分析了作物各发育期持续日数与各气象要素的关系:在一定的范围内,温度升高可以促进夏玉米生长,日照减少可加快夏玉米生育进程,不同生育阶段降水量对作物生长影响不同,其中抽雄-乳熟期降水量增加能缩短发育日数.然后,对比分析了播期对浚单20干物质及产量形成的影响:随着播期推迟,穗长有缩短趋势,单株籽粒重、百粒重、籽粒与茎秆比也随播期的推迟呈下降趋势;播期一平均实产达864.12g/m2,比播期二高74.56 g/m2,比播期三高128.33g/m2,在一定程度上说明浚单20适时早播,有助于产量提高.  相似文献   

3.
通过分期播种,研究了不同播期对水稻生长和产量的影响.通过测定不同播期水稻抽穗期和成熟期的叶绿素、可溶性糖和氮的质量分数,分析不同播期对水稻生长的影响.结果表明Ⅰ期为两优培九和6两优9386最适宜播期,Ⅱ期为Ⅱ优084最适宜播期.播期对水稻单株穗数、每穗粒数、结实率、千粒重均有影响,尤其是对两优培九的结实率、6两优9386的每穗粒数有显著影响.研究结果可为合理利用南方气候资源、合理安排播栽播期、提高水稻产量提供理论依据和技术指导.  相似文献   

4.
在红花种植试验的基础上,对不同试验点及正(复)播红花生育期农业气象条件进行对比分析,总结了气象因子对红花产量的影响特点和规律及气候适应性和最佳播期。  相似文献   

5.
在目前气候明显变暖情况下,以往总结确定的冬小麦播期指标理应做相应调整。通过理论计算得出龙口市小麦最佳播期是:精播栽培期为10月1-9日,中播栽培期为10-18日,独秆栽培期为19-29日。通过3年的试验证明,10月5,10日播种比9月25日和10月1日播种更适宜,不仅能避免过旺生长,而且显著减少了根腐病、纹枯病发病率,小麦表现高产稳产。  相似文献   

6.
气象要素对大豆产量的影响分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于2001-2009年大豆田间试验观测数据,利用相关和通径分析揭示了大豆不同发育期的气象因子和生物因子对大豆产量的影响。结果表明:不同发育期的气象要素对大豆产量影响效果不同,其中开花-结荚期的平均气温与大豆产量相关性最大,为0.90,其次为播种-出苗期的降水,相关系数为0.71,结荚-鼓粒期的相对湿度和日照时数,分枝期的生物量和开花期的叶面积对大豆产量具有一定影响(r>0.5)。通径分析显示具有显著直接作用的因子是开花期的叶面积,不同发育期的气温与降水主要通过对生物量和叶面积的间接作用来影响大豆产量,结荚-鼓粒期的相对湿度和日照时数对产量具有较大的直接作用。耦合气象因子与生物因子建立大豆产量回归模拟方程,能够较好解释大豆产量(R2=0.99)。  相似文献   

7.
油菜适播期,冬前和越冬期的降水、温度与产量形成密切相关,适播期,苗期干旱和冬前寒潮及你 是油菜苗期生长中的几种主要影响灾害,其中以苗期干旱影响为最;适播期干旱发生频率为35%,苗期干旱频率重旱为35%,特旱为14%,冬前寒主低温频率均这50%左右,灾害出现年份油菜产量均受到不同程度影响。  相似文献   

8.
该文选用泰农18(中大穗)、济麦22(多穗)两个冬小麦品种,在2011年9月26日—10月20日采取5个不同播期,3个不同播量进行田间播期播量试验,以期筛选出本地区不同品种类型冬小麦的适宜播期、适宜播量。为充分利用临邑县气候资源和制定合理的小麦播期播量提供依据。  相似文献   

9.
针对干旱灾害频发的辽西地区, 以春玉米为研究对象, 选取WOFOST作物模型, 利用干旱胁迫控制试验数据、田间试验数据和气象数据驱动模型, 进行典型旱年的模型适用性及不同播期的干旱损失评估研究。结果表明: 经过参数校准后的WOFOST模型能够较好的模拟辽西地区典型旱年春玉米产量及损失。辽西地区不同播期受干旱的影响程度不同, 因旱减产风险随播期推迟而减小, 2015年(中旱)干旱导致的平均减产率可达59%—61%, 2018年(轻旱)可达20%—39%, 2020年(中旱)可达36%—62%。不同生育期内干旱对产量的影响程度不同, 总体上拔节期—抽雄期和抽雄期—乳熟期持续重旱对产量的影响最大, 其次是抽雄期—乳熟期、拔节期—抽雄期。玉米各生育期受干旱影响程度, 朝阳站最大, 其次是黑山站和阜新站。辽西地区在旱年, 拔节期—抽雄期发生中旱和重旱风险随播期推迟而增加, 抽雄期—乳熟期发生中旱和重旱风险随播期推迟而减少, 当拔节期—抽雄期和抽雄期—乳熟期连续发生重旱, 干旱灾损程度随播期推迟而加重, 减产率可高达46%—84%。  相似文献   

10.
水稻栽插密度及方式是否合理是实现高产稳产的关键。“合理”的直接表现为高产、高教、优质。因而在表现上则为这种栽插方式及密度形成了良好的供水稻生长发育的小气候生态条件。在相同的播期和管理水平下,由于不同栽插方式的小气候条件不同,水稻的生物学特性和产量也有较大差异。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

13.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

14.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

17.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

18.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.SUBMISSIONAll submitted  相似文献   

19.
20.
《大气和海洋科学快报》2014,(5):F0003-F0003
AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) pub- lishes short research letters on all disciplines of the atmos- phere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号