首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
河南省短时强降水及其云团特征分析   总被引:3,自引:0,他引:3  
根据河南省119个气象站1991-2010年5-9月逐时降水量资料,利用线性趋势和克里金插值等方法,分析了河南省短时强降水及其云团的特征.结果表明:河南省短时强降水自西向东、自北向南呈递增趋势,20.0 ~49.9 mm/h级别的降水在驻马店地区东部和信阳地区西部有明显增多趋势;≥50.0 mm/h级别的降水在周口地区北部有一高值中心.年际变化表明,20.0~49.9 mm/h级别的降水呈显著增加趋势,而≥50.0 mm/h级别的降水呈略增加趋势,但是不显著.月份间的差异非常明显,7月份出现的频次最多,其次是8月份,再次是6月份,5月份和9月份最少.日变化统计表明,上午最少,午后逐渐增加,傍晚和凌晨最多.历年极值雨量7月份出现次数最多,并集中分布在河南省中东部地区,西部地区极值雨量不超过50.0 mm/h,明显低于中东部地区.影响河南省短时强降水的对流云团大致有3个源地6条路径,云团特征可分三种类型,分别为不规则对流云团、圆形或椭圆形云团、带状云系.当有强降水发生时,Tbb值一般很低,但是Tbb值的大小与小时雨量没有很好的相关性.  相似文献   

2.
为进一步分析研究黔东南地区短时强降水的时空分布特征,更好地指导短时强降水预报预警业务工作,利用2015—2021年黔东南地区16个国家自动气象站和410个区域自动气象站逐小时降水资料,对≥20 mm·h-1短时强降水的时空变化特征进行统计分析。结果表明:(1)黔东南短时强降水频次有逐年增加趋势,[20,40) mm·h-1量级的短时强降水年际变化相对较小,其余量级年际变化较大。(2)短时强降水主要出现在主汛期4—9月,6月最多,5月次之;年际变化相对较小的是5月、6月、7月和8月,各月短时强降水量级均以[20,40) mm·h-1量级最多,主要出现在5—8月,以6月出现频次最高。(3)短时强降水主要以[20,80) mm·h-1量级为主,且日变化频次均呈双峰形势,以傍晚至凌晨时段出现最多,中午前后出现的频次次之,具有夜间发生的显著特征。(4)短时强降水空间分布呈南多北少特征,短时强降水高发区与雷公山、月亮山迎风坡、喇叭口等特殊地形的强迫抬升作用密切相关。  相似文献   

3.
利用内蒙古119个国家气象站逐小时降水量及常规的日降水量资料对2012—2015年内蒙古出现的短时强降水及大雨以上天气情况从时空分布、出现概率、降水比率等多方面进行了比较全面的统计。分析了内蒙古短时强降水的时空分布特征,特别是得出了内蒙古短时强降水发生时段,以及短时强降水在整个大到暴雨过程中所占比例等方面的特点,为预报员认识内蒙古短时强降水活动情况提供有利的参考。分析得出:短时强降水在时间、空间以及降水量级上的分布极不均匀,主要发生在6—8月,7月最多;短时强降水主要出现在午后到傍晚时段,集中在15—17时,尤其17时最多;短时强降水多出现在日降水在6h之内(含6h),占短时强降水发生总数的57%;短时强降水的降水比率相当高,有84%的短时强降水过程中短时强降水雨量占当日降水总量的50%以上,39%的占当日降水总量的80%以上;短时强降水受地形增幅影响极大,内蒙古东部偏东的大兴安岭东侧和西中部阴山山脉南侧均为短时强降水多发区。  相似文献   

4.
利用山西省109站1981-2018年的短历时强降水资料,采用趋势系数、归一化、中尺度天气分析等方法,对1 h、3 h、6 h、12 h短历时强降水的极值、频次、日、月以及年代际等趋势变化和主要影响系统进行统计分析。结果表明:(1)极值空间分布具有山区大于盆地、南部大于北部,时效越短,极值分布的局地性越强等特点。(2)12 h内不同历时强降水出现频次具有"南高北低、山区高于盆地、东部山区高于西部山区、东南明显集中"的空间分布特点。(3)不同历时强降水集中出现在每年的7-8月,其中,1 h≥20 mm的短历时强降水出现频次最高。(4)1 h雨量≥20 mm、3 h雨量≥30 mm以及12 h雨量≥50mm强降水发生频次日内分布均为单峰型,6 h雨量≥50 mm强降水发生频次日内分布为双峰型。(5)1 h、3 h和6 h短历时强降水年发生次数的变化趋势为山西省东南部的增长速率最大;12 h短历时强降水年发生次数的变化趋势为山西省的东部和西部山区最大。(6)6 h和12 h与1 h和3 h短历时强降水的主要影响系统有明显差异,61%的6 h和12 h短历时强降水个例为系统性降水与多个中尺度强降水的组合造成。  相似文献   

5.
利用2010—2018年夏季阿勒泰地区112个自动气象站逐时降水资料,采用常规统计方法分析了阿勒泰地区夏季短时强降水时空分布特征。结果表明,2010—2018年夏季阿勒泰地区短时强降水的空间分布极不均匀,主要发生在阿尔泰山和沙吾尔山迎风坡、地形陡升区、喇叭口地形、戈壁和乌伦古湖交界区等复杂地形附近;发生次数年际变化大,2017年出现最多达95次,2010年出现最少为10次;极大值出现在2017年6月30日15:00哈巴河县合孜勒哈克村(37.5 mm/h),极小值出现在2015年8月9日17:00福海县工业园区(22.5 mm/h)。旬、日发生频次变化均呈单峰型,旬峰值出现在7月上旬,日高峰值时段出现在午后至傍晚(19时左右);各站短时强降水持续时间为1—2 h,区域性短时强降水最长持续时间为5 h;2017年短时强降水出现最多、持续时间最长、范围最广、强度最强。  相似文献   

6.
杨学斌  代玉田  王宁  周成 《山东气象》2018,38(2):103-109
利用山东2006—2015年5—9月123个国家级气象观测站10 a逐小时降水量资料,统计分析了山东短时强降水的时空分布特征,结果表明:1)站次时空分布不均。鲁南易出现短时强降水,2013年最多,达到了564站次,7月最多,平均207站次,多出现在傍晚前后和凌晨。2)极值时空分布差异较大。10 a单站极值大值区分布在鲁西北、鲁南和半岛东部,2009年最多,为17站,且多夜间发生;10 a中年度极值均出现在13:00—次日02:00,8月最多,为7次。3)5、6、9月局地和小范围短时强降水天气过程所占比例较大,7—8月大范围短时强降水过程明显增加。  相似文献   

7.
利用陕西省99个国家级气象站逐小时降水量资料,分析了2005—2018年5—10月陕西短时强降水时空分布特征,结果表明:(1)2005—2018年陕西极值雨强呈振荡减小趋势,7月出现的强降水累计频次最多,而8月极值雨强最大;短时强降水主要发生在午后到夜间,日变化呈单峰分布,强降水频次峰值出现在17—00时,但极值雨强易出现在22—00时。(2)陕南为陕西短时强降水高发区,极值雨强可达40~80 mm/h,镇巴、平利雨强可达90 mm/h;榆林北部特别是西北部短时强降水日数少,极值雨强小,最大不超过50 mm/h;关中平原地区短时强降水日数少,但极值强,最大可达1015 mm/h。5—10月陕西各地区短时强降水日、极值雨强有明显月际差异,7—8月短时强降水出现的范围广,日数多,强度大;5、6和9月范围、日数及强度均较小。(3)陕西各区域短时强降水日变化差异明显,陕北西部、关中西部呈单峰型,陕北东部、关中东部双峰明显,陕南日变化相对较小。陕西极值雨强主要出现在17—23时,关中东部、安康极值雨强多出现在19时,商洛极值雨强多出现在18时。  相似文献   

8.
选取2010—2014年广东省86个国家气象站和2 300多个区域中尺度气象站的小时雨量数据,分析了广东短时强降水的时空分布特征,结果表明:(1)广东的短时强降水多发区集中在3大暴雨中心以及珠三角城市群和西南部的湛江、茂名地区;短时强降水的空间分布与地形关系密切,多产生于河谷、湖泊和喇叭口地形区。(2)短时强降水有明显的月变化,5月份短时强降水次数爆发性增长,次数可占全年总次数的25%,其次是6和8月。(3)短时强降水的日变化总体表现为双峰型,主峰在午后至傍晚时段(14:00—20:00),次峰在早晨前后(04:00—09:00),而午夜(22:00—02:00)是短时强降水发生最少的时段。  相似文献   

9.
基于2016—2019年防城港市自动气象站小时雨量,结合地形分析短时强降水时空分布特征,结果表明:十万大山南北两侧短时强降水次数从北到南递增,大值区位于十万大山南侧的迎风坡及喇叭口地形;各月的短时强降水的分布有差异,短时强降水主要发生在4—9月,6月短时强降水分布不均匀,7—8月短时强降水最强盛;受对流日变化、低空急流、海陆风等影响,短时强降水日变化特征明显,前汛期市南部短时强降水高峰期出现在清晨、市北部出现在凌晨和午后,后汛期市南部出现在清晨和午后、市北部出现在午后到傍晚,非汛期短时强降水出现的时段呈多峰值态势。  相似文献   

10.
2008-2012年南京短时强降水特征分析   总被引:4,自引:0,他引:4  
利用2008-2012年南京自动气象观测站逐时降水量的观测资料,分析南京短时强降水的发生规律,包括短时强降水的年变化、月变化、日变化和空间分布等特征。结果表明:2008-2012年南京雨强大于50 mm/h-1的致灾性短时强降水过程的发生次数呈显著增长趋势;短时强降水天气主要出现在6-9月,其中7-8月出现日数最多,雨强最大;春雨期短时强降水最易发生在凌晨,梅雨期短时强降水最易发生在上午和傍晚,台汛期短时强降水最易发生在上午;下半夜-凌晨短时强降水出现次数较少,傍晚前后是短时强降水多发时段;短时强降水天气的空间分布具有明显的城郊差异;城市化效应不能引起城区的局地降雨,但在大尺度天气系统过境时,会使城区的对流活动较郊区更活跃,且城市下风向地区的降水也因此增强。  相似文献   

11.
该文利用2010—2019年4—8月遵义13个国家站逐时地面降水观测资料,从年变化、月变化、日变化以及空间分布等多个角度进行统计,从不同等级雨强的时空分布进行分析,初步得出了遵义短时强降水事件的时空分布特征:①从短时强降水总频次的空间分布上看,东部发生频次较其余地区高;4月,发生频次地区差异小;5—8月,地区差异大。②从月分布来看,短时强降水高频中心有如下变化:4月集中在东北部、5月在南部和东南部、6月西移北抬到西部和中部、7月西移南压到西部和南部、8月东北移至东北部,高频中心的变化和副热带高压的南北位移有很好的对应。③从年分布来看,短时强降水事件平均每年发生49次,最多的是65次(2019年),最少的是33次(2017年)。4—6月事件频次迅速增加,6月到达峰值,6—8月事件频次开始逐渐减少,74.1%的短时强降水事件发生在夏季,尤其以6月份居多。④从日变化来看,08—13时短时强降水事件发生频次逐渐减少,13时达到一日中最低值,13—07时事件发生频次逐渐增加,有3个峰值,17—19时、20—22时和01—07时,期间有2个短暂的间歇期。4—7月白天平均发生频次较夜间少,8月反之。⑤6—8月是较高等级短时强降水事件的高发季节,尤其以6月份居多,但统计个例中≥70 mm/h的雨强却是在5月份出现。  相似文献   

12.
利用2013-2019年暖季(4-9月)小时降水资料,分析了甘肃省强降水极值及频率的时空分布特征。结果表明:(1)甘肃省小时强降水频次呈现东高西低分布,在陇南地区东南部及陇东地区北部有2个高中心,达到29次。(2)小时强降水极值在陇中地区及以南地区高,向西北递减,陇南地区降水极值最高,超过40 mm/h。(3)小时强降水频次主要出现在7-8月,同期的雨强也最大;小时强降水频次和小时雨强均在17-24时最强,峰值为21时。(4)不同区域的降水日内变化存在明显差异,河西地区小时降水频次的峰值出现在18时,陇中和陇南地区均出现在21时,陇东地区和甘南高原分别出现在22时和19时。  相似文献   

13.
利用2010~2019年浙江省基准气象站和自动气象站逐小时降水的观测资料,对浙江省短时强降水的时空分布特征进行了统计分析,结果表明:1)2010 ~2019年浙江短时强降水累计发生频次为72601站次,随雨强增大呈指数式衰减。2)短时强降水空间分布不均匀,沿海向内陆发生频次减少,出现频次最高的地区位于温州西南部。夏半年随时间推进和影响系统演变,短时强降水的空间分布亦存在差异:5~6月浙西地区短时强降水多发,7月短时强降水全省分散分布无明显的区域集中特征,8~10月则主要在沿海地区多发。3)总体而言短时强降水的日变化峰值出现在17:00(北京时间,下同),且高强度短时强降水更倾向发生在午后到傍晚时段。夏秋季节短时强降水在午后到傍晚最为多发,峰值出现在17:00至18:00,这与副热带高压强盛,午后到傍晚热力和不稳定条件好,易触发强对流天气有关;春季除午后到傍晚外夜间和凌晨亦为短时强降水多发时段,可能与低空急流多在夜间和早晨发展加强有关。短时强降水的月变化特征呈现类双峰型分布,8月最为多发(26.0%)(主要由台风降水造成),其次为6月和7月。不同强度的短时强降水月变化特征存在较明显差异。而短时强降水的年际分布不均,2015年之后年际变化幅度增大,其中 2016 年短时强降水发生频次最高达8728站次,2017 年为发生频次最低仅5581站次。  相似文献   

14.
基于2013~2020年乐山地区9个国家自动站和136个区域自动站逐小时降水资料,应用诊断分析方法,系统研究了乐山地区短时强降水的时空分布及变化特征,探讨了短时强降水发生频次与地形因子的关系。结果表明:乐山地区短时强降水年均频次和极值均呈增加的趋势,强度较为稳定,变率不大。短时强降水在3~10月均有发生,其频次月分布呈现出单峰型的特征,集中发生在7~8月,占全年的77.7%,7月下旬~8月上旬发生频次又占7~8月总量的49.8%。短时强降水频次日变化呈单峰单谷结构,夜间发生概率最大,白天发生概率相对较小,22时~次日04时是短时强降水集中高发时段,虽然短时强降水在午后和傍晚的发生概率相对较小,但其强度较强,也应当引起重视。乐山地区短时强降水空间分布差异较大,存在两级分化的特点,与地形关系密切,总体呈西南部和东北部少、西北部—中部—东南部多的分布特征。短时强降水的发生与经纬度、海拔高度等地形因子显著相关,高发区主要集中在山谷喇叭口、岷江流域的河谷地带及城市热岛区。   相似文献   

15.
利用呼和浩特气象站1951—2009年逐日降水量资料,以年序列的第90个百分位,建立了日降水量极端气候事件的阈值,检测了近59年来呼和浩特逐日降水量极端事件的出现频率,分析了极端事件阈值和日数及降水量的年际、年代际和季节变化,结果显示:①呼和浩特日降水极端事件的阈值小,为10.6mm;全年极端事件出现的频次11d。②降水极端事件主要出现在4-10月,且8月最多。③近59年来呼和浩特全年降水极端事件及其降水量没有显著的增减变化趋势,但而进入21世纪后,极端降水事件及其降水量的变率加大,降水强度明显减小。  相似文献   

16.
利用横断山脉纵向岭谷典型区域2005~2019年28个地面气象观测站逐时降水数据,分析纵谷区短时强降水时空分布特征,结果表明:(1)纵谷区年降水量自西向东减少,而短时强降水量对年降水量的贡献则从西北向东南增加,短时强降水发生频率空间分布极不均匀,在0.1~6.7次/年之间,纵谷区上段发生频率很低,怒江下游和金沙江下游周边流域出现2个大值中心。(2)纵谷区短时强降水年发生频率具有0.022次/年的增加趋势。发生频率逐月变化峰值在7~8月出现,纵谷区下段2个大值中心在6~9月均明显存在;逐候变化多峰值特征突出(36、39~44、47和51候4个峰值),且51候后的下降趋势强于36候前的增加趋势,候频率高峰到达时间的空间分布表现出东北早、西南晚的特点。(3)发生频率日变化主峰值多出现在凌晨,次峰值在傍晚。子夜前后、凌晨、清晨三个时段频率空间分布均自北向南、东南增加,怒江和金沙江下游的2个大值中心明显,而午后、傍晚二个时段频率的空间分布差异较小。纵谷区中上段发生频率日变化幅度大,其西部多为夜发性短时强降水,而东部则以午后至傍晚的短时强降水为主,纵谷区下段发生频率日变化幅度小,午后、傍晚、夜间都会出现。短时强降水的这些时空分布特征与横断山脉纵向岭谷地形及南亚季风活动特性密切相关。   相似文献   

17.
近6年陕甘宁三省5—9月短时强降水统计特征   总被引:5,自引:1,他引:4       下载免费PDF全文
利用2005—2010年5—9月加密自动气象站1 h降水资料对陕甘宁三省不同强度短时强降水时空分布特征、天气学概念模型以及物理量特征进行研究,结果表明:短时强降水在陕甘宁三省存在4个活跃区和3个不活跃区;7—8月是短时强降水的多发期,两大峰值出现在7月下旬和8月中旬,日变化呈双峰分布,1 h降水量≥30 mm的短时强降水具有夜间多发性;通过典型个例的综合分析,建立了低槽-副高型、低涡-远距离台风型、两高切变型3类短时强降水概念模型;从物理量场来看,3类短时强降水均具有丰富的水汽和不稳定层结 (能量)、高于发生冰雹的0℃层高度、较厚的暖云厚度,且均发生在弱风切变环境中;低槽-副高型最为典型,其抬升凝结高度最高,500 hPa与850 hPa假相当位温差Δθse、抬升指数,K指数,对流有效位能量值最低,短时强降水发生频次高,1 h降水量大多在25 mm以内。低涡-远距离台风型水汽条件最好,深厚湿区、次天气尺度Ω系统和较低的抬升凝结高度使短时强降水发生范围最广,强度更强。两高切变型降水强度最大、持续时间最短并具有突发性, 其Δθse、抬升指数、K指数、对流有效位能最高,0~3 km垂直风切变最强,对流性特征明显,特别是强天气威胁指数接近300,强降水发生的同时往往伴有雷暴。  相似文献   

18.
利用柳州市2010-2019年75个加密自动气象观测站小时降水资料,分析柳州市1h、3h、6h短时强降水时空分布特征。结果表明:短时强降水出现最多的是融安、融水一带以及鹿寨北部,山脉的迎风坡和喇叭口地形更利于短时强降水的出现;高发期在5、6月份,其次是7、8月份;短时强降水的日变化呈现单峰结构,主要出现在夜间和早晨时段。该区域短时强降水时空分布特征差异显著,与影响系统、地形的辐合抬升作用以及局地热力条件差异有关。  相似文献   

19.
利用2000—2014年6—8月常规资料、FNL资料和辽宁省逐时降水资料,将东北冷涡分为北涡、中间涡和南涡,统计每类冷涡短时强降水特征,并进行动态合成分析。结果表明:短时强降水共755次,冷涡下227次,冷涡强降水多发生在1~3 h内。6月短时强降水主要由中间涡引起,7、8月中间涡与北涡共同影响,有一定周期变化;而南涡没有在辽宁产生强降水。北涡水汽输送充沛,中间涡水汽条件较差,切变辐合场与水汽输送的结合是有利于强降水的重要因子。降水基本处于斜压区内,冷涡中心降水处在斜压区北侧和高空急流左前方,高空槽前或槽后的降水处在斜压区南侧和急流中心右后方,降水区附近多有高空急流形成的次级环流配合。槽后降水区干侵入活动明显,冷涡中心降水主要通过高位涡诱发气旋性环流而触发上升运动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号