首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 281 毫秒
1.
利用甘肃兰州地区144个区域自动站和国家站2010—2018年4—9月逐小时降水资料和地理信息数据,详细分析了兰州市短时强降水的时空分布特征,探讨短时强降水频次与地形因子的关系。结果表明:兰州市短时强降水的阈值为10 mm·h~(-1),短时强降水事件主要发生在7月下旬至8月,21:00—22:00是集中高发时段;短时强降水频次空间分布不均,总体呈南多北少的分布格局,各站虽有显著差异,但未发生明显离散,符合正态分布,且与海拔高度、迎风坡向及坡度等地形因子显著相关,短时强降水高发区主要集中在山谷喇叭口、南风迎风坡、城市热岛区、高寒山区。  相似文献   

2.
利用四川地区自动气象站逐小时降水观测资料,分析了2010~2019年5~9月短时强降水事件24h累计降水量、频次和强度的时空分布特征,探讨了短时强降水事件发生的频次、极值分布及其与地形、海拔高度等的关系。结果表明:四川地区平均24h累计降雨量基本在50mm以上,盆地东北部、西南部、南部及阿坝州东部甚至超过100mm,最大值出现在广安,达175mm。四川地区短时强降水事件开始时间的日变化特征表现为“V”型结构的夜间峰值位相,事件持续时段多为傍晚至凌晨,时长可达10h以上,最长甚至可持续22h。在强降水事件极值的日变化上,极大值频次和降水量呈单峰结构,在03时达到最大,其后逐渐减小至15时达到谷值,而后再次增大;降水强度呈弱双峰结构,分别在04时和16时达到谷值,13时和18时达到峰值,其日变化呈“增-减-增-减”的特征。四川短时强降水事件与复杂地形有密切的关系,5~6月事件活跃区在四川盆地中部,7月在盆地西部的龙门山脉一带,8月在雅安、乐山附近,9月在盆地北部且频次明显减少;短时强降水事件的最大小时雨强可达80mm以上,出现在7~8月的盆地西部龙门山一带和南部地区。短时强降水事件随着海拔高度的增加,发生频次和日数逐渐减少,海拔2000m以上地区基本无强降水发生日出现( 峨眉山气象站例外)。   相似文献   

3.
重庆东北部短时强降水时空分布及概念模型   总被引:1,自引:0,他引:1  
该文利用2007—2011年重庆东北部区域气象观测站和自动气象观测站的逐小时降水观测资料以及MICAPS高空、地面观测资料,分析了短时强降水的时空分布特征,发现:渝东北短时强降水事件逐年增多,降水站次显著增加,强降水雨量占年雨量比例逐年加大;短时强降水月际变化呈单峰型分布,7月为全年峰值所在;短时强降水夜间发生概率最大,其次是午后,上午发生的概率相对较小,其中,03—06时和18时前后发生短时强降水的可能性极大,且强度较强;空间特征方面,开县、云阳、巫溪中西部以及万州东部是短时强降水的高发区,渝东北地形对降水的影响主要包括喇叭口地形、狭管效应、山谷风环流等。根据短时强降水事件的高空环流场,建立了6个渝东北地区短时强降水概念模型,分别为:高原槽型、两高切变型、高原波动型、脊前北风型、低涡型和偏南气流型,各模型皆具备冷暖气流的交绥、不稳定层结、充足水汽以及抬升触发机制。  相似文献   

4.
《湖北气象》2021,40(4)
利用2005—2018年贵州省84个国家气象站逐小时降水量资料,采用统计诊断分析方法,在区分量级前提下,结合地形特征,分析贵州1 h短时强降水和逐3 h降水的时空分布特征。结果表明:(1) 14 a中短时强降水共出现5 981站次,年均427.2站次,其空间分布与地形特征密切相关,整体呈现南多北少、东多西少的特征,贵州西南部“喇叭口”地形和东南部雷公山南侧“喇叭口”地形与河谷地形重叠区域为短时强降水高发区。短时强降水分级统计显示,99%的短时强降水集中在前两个雨强较小的等级,而R1h≥80 mm的短时强降水14 a只出现过5站次。各站点最大雨强空间分布与短时强降水的总站次数分布趋势较为一致,一般南部大于北部、中东部大于西部,局部存在差异。平均雨强整体呈现南强北弱的特征。(2)在2005—2013年期间,短时强降水站次数大多处于年均值(427.2站次)之下,2011年达到最低值275站次,2014年站次数骤然增加至564站次,2015年继续增加到最大值662站次,其后迅速回落到比年均值略高的位置小幅变化。各站点短时强降水的年际变化在高发区离散度较大,在贵州西北部低发区离散度较小;月际变化曲线呈单峰型,5—8月份是降水高发时段,6月达到峰值。短时强降水主要以单站出现的局地性降水为主,同一时次出现3站以上的情况很少,以6月最多;短时强降水最早出现旬数呈东早西晚、南早北晚的特征,结束旬数西早东晚,北早南晚;各站点短时强降水出现概率最大旬多数集中在第16—18旬(即6月);短时强降水日变化的时间曲线呈单峰型,21时至次日07时为高发时段,中午12时前后出现较少。短时强降水日变化的空间分布特征为傍晚到前半夜主要集中在贵州西部,而后半夜多出现在东部和南部地区,中午前后全省均较少出现。(3)逐3 h降水时空分布特征与R1h大体一致,局部存在一些差异。  相似文献   

5.
利用2008—2018年地面自动站逐小时降水资料,统计分析重庆短时强降水的时空分布特征,结果表明:1)重庆短时强降水高频中心在西部合川,东北部开州、巫溪和云阳,东南部酉阳、秀山地区,均毗邻陡峭山脉,地形抬升和特殊地形对降水有增幅作用;2)短时强降水主要集中在6—8月,7月为峰值期,20~30 mm/h和30~50 mm/h站次月际呈反位相变化,前者先降后增,后者呈先增后降;日内短时强降水主高峰在凌晨到早间(00—08时),峰值在03—05时,次高峰在15—18时,主高峰峰值明显强于次高峰;3)西南低涡背景下,重庆西部的高频中心远强于东南部酉阳、黔江次中心,西南低涡对西部地区短时强降水影响更明显,高频月份在6月;对短时强降水量的贡献量,以西部和主城最大,其次是西南部、中部和东部地区,东北部城口、巫溪和东南部秀山贡献最小;4)不同海拔短时强降水频次分布与站点数密切相关,海拔200~800 m的短时强降水频次占总频次的83%,且出现了雨强极值最大值,随后,频次和雨强极值呈明显下降趋势。  相似文献   

6.
利用青藏高原边坡临夏地区6个国家级自动气象站和66个乡镇区域自动气象站2010—2019年5—9月逐小时降水资料,详细分析了临夏地区短时强降水的时空分布及海拔地形特征,结果表明:近10 a短时强降水频次总体呈上升趋势,短时强降水频次与西太副高脊线位置和北界位置有密切关系。短时强降水主要发生在5—9月,集中时段为7月中旬到8月中旬,19:00~23:00为高发时段,属于傍晚型和夜雨型。近10 a临夏地区短时强降水的极端性逐年增大,单站年均频次在0.2~2.6次之间,平均为0.8次,短时强降水空间分布差异较大,总体呈西南多、东部和北部少,山区多、川区少的分布特征。临夏地区降水分布与海拔高度有明显关系,5—9月平均降水量随海拔高度升高而增大,不同海拔地形下短时强降水频次分布呈现两个极端:海拔较高的山地喇叭口地形区域和海拔较低的河谷地区,是临夏地区汛期短时强降水的重点关注区域。  相似文献   

7.
为进一步分析研究黔东南地区短时强降水的时空分布特征,更好地指导短时强降水预报预警业务工作,利用2015—2021年黔东南地区16个国家自动气象站和410个区域自动气象站逐小时降水资料,对≥20 mm·h-1短时强降水的时空变化特征进行统计分析。结果表明:(1)黔东南短时强降水频次有逐年增加趋势,[20,40) mm·h-1量级的短时强降水年际变化相对较小,其余量级年际变化较大。(2)短时强降水主要出现在主汛期4—9月,6月最多,5月次之;年际变化相对较小的是5月、6月、7月和8月,各月短时强降水量级均以[20,40) mm·h-1量级最多,主要出现在5—8月,以6月出现频次最高。(3)短时强降水主要以[20,80) mm·h-1量级为主,且日变化频次均呈双峰形势,以傍晚至凌晨时段出现最多,中午前后出现的频次次之,具有夜间发生的显著特征。(4)短时强降水空间分布呈南多北少特征,短时强降水高发区与雷公山、月亮山迎风坡、喇叭口等特殊地形的强迫抬升作用密切相关。  相似文献   

8.
利用安康185个区域站小时降水数据和国家站探空数据、多普勒雷达数据,统计分析了2010—2020年5—10月安康市短时强降水的分布特征。结果表明:安康短时强降水主要出现在17—19时和22时—次日01时,且61.6%发生在7月中旬—8月中旬,在石泉西部发生最多;基于地形与短时强降水的关系来看,在海拔1 000 m以下,短时强降水频次随海拔高度先增加后减少,且在300~600 m内较多;从坡向和坡度来看,短时强降水在西坡发生最多,主要在陡坡、斜坡及缓斜坡地形发生。通过对134个短时强降水过程统计分析,归纳出副高控制型、两高切变型、前倾槽型和低空急流型四种天气概念模型,其中低空急流型占比高达58.4%;分析四种概念模型的温湿廓线和物理量特征,结合雷达资料,得到物理量指标及典型雷达特征图,对安康汛期短时强降水预报预警有一定指示意义。  相似文献   

9.
利用2010~2019年浙江省基准气象站和自动气象站逐小时降水的观测资料,对浙江省短时强降水的时空分布特征进行了统计分析,结果表明:1)2010 ~2019年浙江短时强降水累计发生频次为72601站次,随雨强增大呈指数式衰减。2)短时强降水空间分布不均匀,沿海向内陆发生频次减少,出现频次最高的地区位于温州西南部。夏半年随时间推进和影响系统演变,短时强降水的空间分布亦存在差异:5~6月浙西地区短时强降水多发,7月短时强降水全省分散分布无明显的区域集中特征,8~10月则主要在沿海地区多发。3)总体而言短时强降水的日变化峰值出现在17:00(北京时间,下同),且高强度短时强降水更倾向发生在午后到傍晚时段。夏秋季节短时强降水在午后到傍晚最为多发,峰值出现在17:00至18:00,这与副热带高压强盛,午后到傍晚热力和不稳定条件好,易触发强对流天气有关;春季除午后到傍晚外夜间和凌晨亦为短时强降水多发时段,可能与低空急流多在夜间和早晨发展加强有关。短时强降水的月变化特征呈现类双峰型分布,8月最为多发(26.0%)(主要由台风降水造成),其次为6月和7月。不同强度的短时强降水月变化特征存在较明显差异。而短时强降水的年际分布不均,2015年之后年际变化幅度增大,其中 2016 年短时强降水发生频次最高达8728站次,2017 年为发生频次最低仅5581站次。  相似文献   

10.
选取了甘肃平凉地区2015-2019年6-8月发生的27次短时强降水事件。利用自动站逐小时降水资料和高空探测资料,按照短时强降水阈值分类统计法和常规天气分析方法对甘肃平凉地区夏季短时强降水时空分布、影响天气系统及大气环境背景进行了统计分析。结果表明:6月短时强降水频次少,强降水高发区为六盘山山区;7月频次明显增多,活跃地区为静宁、崇信、泾川一带;8月频次及强度达到峰值,密集区为平凉北部的崆峒山区、崇信南部河谷地带。6月短时强降水日变化呈现单峰型特征,以午后居多,1 h降水量在20-30 mm段发生频次最高,占6月频次的80%以上;7月和8月日变化呈多峰型结构,夜间短时强降水频次增多,1 h降水量大于30 mm的频次显著增加,约占7月和8月总频次的40%。分析总结了平凉地区短时强降水天气类型,即高空低槽类、副热带高压类、西北气流类。另外,对表征动力、水汽、不稳定条件的环境参数统计分析,结果显示K指数、CAPET850-T500Q850θse-850等物理量平均特征值对平凉地区强降水预报有较好的指示意义。  相似文献   

11.
该文利用2010—2019年4—8月遵义13个国家站逐时地面降水观测资料,从年变化、月变化、日变化以及空间分布等多个角度进行统计,从不同等级雨强的时空分布进行分析,初步得出了遵义短时强降水事件的时空分布特征:①从短时强降水总频次的空间分布上看,东部发生频次较其余地区高;4月,发生频次地区差异小;5—8月,地区差异大。②从月分布来看,短时强降水高频中心有如下变化:4月集中在东北部、5月在南部和东南部、6月西移北抬到西部和中部、7月西移南压到西部和南部、8月东北移至东北部,高频中心的变化和副热带高压的南北位移有很好的对应。③从年分布来看,短时强降水事件平均每年发生49次,最多的是65次(2019年),最少的是33次(2017年)。4—6月事件频次迅速增加,6月到达峰值,6—8月事件频次开始逐渐减少,74.1%的短时强降水事件发生在夏季,尤其以6月份居多。④从日变化来看,08—13时短时强降水事件发生频次逐渐减少,13时达到一日中最低值,13—07时事件发生频次逐渐增加,有3个峰值,17—19时、20—22时和01—07时,期间有2个短暂的间歇期。4—7月白天平均发生频次较夜间少,8月反之。⑤6—8月是较高等级短时强降水事件的高发季节,尤其以6月份居多,但统计个例中≥70 mm/h的雨强却是在5月份出现。  相似文献   

12.
利用2013~2019年云南省逐小时气象数据,研究不同等级短时强降水和大风的时空分布特征。结果表明:云南短时强降水和大风多出现在山地和河谷等地形复杂区。其中,云南短时强降水强度大多低于30 mm·h?1,峰值出现在7~8月,午后至清晨出现短时强降水概率高,大多分布在滇西南、滇南、滇东边缘以及金沙江河谷。大风多为6级左右,3月出现最多,中午至午后更易出现,主要分布在滇西北横断山脉至滇南哀牢山以东。雷暴大风多为7级左右,呈双峰型分布,春季多于夏季,日峰值出现在16~17时,高发区主要在玉龙雪山和苍山以东以及哀牢山、无量山附近。   相似文献   

13.
利用柳州市2010-2019年75个加密自动气象观测站小时降水资料,分析柳州市1h、3h、6h短时强降水时空分布特征。结果表明:短时强降水出现最多的是融安、融水一带以及鹿寨北部,山脉的迎风坡和喇叭口地形更利于短时强降水的出现;高发期在5、6月份,其次是7、8月份;短时强降水的日变化呈现单峰结构,主要出现在夜间和早晨时段。该区域短时强降水时空分布特征差异显著,与影响系统、地形的辐合抬升作用以及局地热力条件差异有关。  相似文献   

14.
利用2010-2019年浙江省暖季(5-9月)1426个国家站和区域站小时雨量数据和NCEP 1° X 1°逐日4次再分析资料,分析了浙江省暖季短时强降水、极端短时强降水时空分布特征及区域性短时强降水事件,结果表明:①近10年暖季短时强降水频次呈增多趋势,降水强度变化平稳;8月(上旬)降水频次最多,9月(中旬)强度最强...  相似文献   

15.
利用横断山脉纵向岭谷典型区域2005~2019年28个地面气象观测站逐时降水数据,分析纵谷区短时强降水时空分布特征,结果表明:(1)纵谷区年降水量自西向东减少,而短时强降水量对年降水量的贡献则从西北向东南增加,短时强降水发生频率空间分布极不均匀,在0.1~6.7次/年之间,纵谷区上段发生频率很低,怒江下游和金沙江下游周边流域出现2个大值中心。(2)纵谷区短时强降水年发生频率具有0.022次/年的增加趋势。发生频率逐月变化峰值在7~8月出现,纵谷区下段2个大值中心在6~9月均明显存在;逐候变化多峰值特征突出(36、39~44、47和51候4个峰值),且51候后的下降趋势强于36候前的增加趋势,候频率高峰到达时间的空间分布表现出东北早、西南晚的特点。(3)发生频率日变化主峰值多出现在凌晨,次峰值在傍晚。子夜前后、凌晨、清晨三个时段频率空间分布均自北向南、东南增加,怒江和金沙江下游的2个大值中心明显,而午后、傍晚二个时段频率的空间分布差异较小。纵谷区中上段发生频率日变化幅度大,其西部多为夜发性短时强降水,而东部则以午后至傍晚的短时强降水为主,纵谷区下段发生频率日变化幅度小,午后、傍晚、夜间都会出现。短时强降水的这些时空分布特征与横断山脉纵向岭谷地形及南亚季风活动特性密切相关。   相似文献   

16.
贵州省汛期短时降水时空特征分析   总被引:10,自引:2,他引:8  
彭芳  吴古会  杜小玲 《气象》2012,38(3):307-313
利用贵州区域84测站1991—2009年汛期(4—9月)逐小时降水量资料,分别定义各站点的小时降水量的强降水阈值。阈值的分布有两个高值中心,最强中心在西南部望谟站,西北部的强降水阈值较低。同时利用各站点阈值统计19年不同月份的强降水事件频数,其分布显示:4月份东部和中部偏南地区频数较高,5月份频数高值区呈东北—西南向,随后几个月逐渐向西北推进。4—6月事件频数逐渐增大,7月维持,8—9月开始减少。各月强降水事件发生时次统计表明:一天中有三个相对高值时段,23:00—02:00、05:00—08:00和17:00—20:00,而白天强降水事件很少。短时强降水事件发生时次的空间分布表明,西北部的强降水事件多数发生在傍晚到23:00,中部的强降水集中在23:00—02:00,东南部在05:00—08:00。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号