首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 734 毫秒
1.
我国瓦里关山、兴隆温室气体CO2、CH4和N2O的背景浓度   总被引:14,自引:1,他引:13       下载免费PDF全文
为了研究中国大陆温室性气体CO2、CH4和N2O大气浓度的区域分布和变化特征以及与人类活动的关系,从1995~2000年,先后在青海瓦里关山全球大气基准站(36°18′N,100°54′E,3810 m)及河北中国科学院兴隆天文台(40°24′N,117°30′E, 940 m),利用不锈钢瓶取样和气相色谱法分析,观测了两地大气中温室气体CO2、CH4和N2O的浓度及其变化情况。结果表明:兴隆和瓦里关山站CO2、CH4和N2O的同期年平均浓度分别为376.7×10-6和373.5×10-6,1886×10-9和1831×10-9,316.7×10-9和314.9×10-9。从1995~2000年,兴隆站CO2、CH4和N2O的年增长率分别为1.95×10-6,9.02×10-9和0.75×10-9。而瓦里关山站从1997~2000年,CO2、CH4和N2O的年增长率分别为1.41×10-6,9.95×10-9和0.82×10-9。两地大气中三种气体的浓度与年增长率与全球同类台站的观测结果接近。同时也在一定程度上反映了各自不同的环境背景特征。  相似文献   

2.
我国温室气体本底浓度网络化观测的初步结果   总被引:9,自引:0,他引:9       下载免费PDF全文
CO2和CH4是《京都议定书》限排的主要温室气体。自1990年以来的长期观测表明, 我国青海瓦里关全球本底站大气CO2和CH4浓度与北半球中纬度地区其他一些本底站的同期观测结果具有可比性, 观测数据已成为WMO全球温室气体公报及国内外有关评估报告的重要参考依据; 我国4个区域本底站过去一年来的采样分析结果显示:北京上甸子、浙江临安、黑龙江龙凤山、湖北金沙大气CO2和CH4浓度明显高于同期瓦里关站的观测值, 表明4个区域站大气CO2和CH4受自然及人为活动的影响较大。迄今为止, 国内相关部门通过多种方式开展了温室气体浓度长期观测或短期科研, 各具优势和特点, 但力量相对分散、观测站稀少、侧重点和目标各异。为了全面掌握我国温室气体本底浓度时空变化, 了解不同区域大气受自然和人为活动影响的程度, 亟需相关部门分工协作、优势互补、资源共享, 尽快推进我国温室气体及相关微量成分的网络化观测分析和源汇反演模式系统建设, 进而测算、验证不同区域温室气体排放源和吸收汇的动态变化, 分析、评估各区域之间的输送和影响, 为我国应对气候变化的内政、外交提供决策支持。  相似文献   

3.
中国大气本底基准观象台(以下简称:瓦里关本底台)座落在青海省海南藏族自治州共和县境内瓦里关山山顶上,坐标为36°17′N,100°54′E,海拔3816m(山顶相对高度为600m。瓦里关本底台是世界气象组织(WMO)全球大气观测系统(GAW)的22个全球基准站之一,是目前世界上唯一地处欧亚大陆腹地、大陆型的全球基准站;也是我国大气本底监测站网的核心指标站。瓦里关本底台已被中华人民共和国科学技术部列为国家重点野外科学观测试验站。  相似文献   

4.
为了解青藏高原黑碳气溶胶的长期演变特征及来源,使用1994年7月至2017年7月共24 a的中国瓦里关全球大气本底站等效黑碳浓度地面观测数据,1994年8月至2004年6月的风向、风速地面观测数据,美国国家环境预测中心/国家大气研究中心全球再分析气象数据,分析了青藏高原中国瓦里关全球大气本底站测量的等效黑碳浓度的长期演变特征及输送特征。在此基础上利用拉格朗日混合单粒子轨道模型、浓度权重轨迹分析方法分析了黑碳污染气团的区域输送路径及潜在来源。结果表明,瓦里关站的等效黑碳浓度在24 a间先升后降,在2012年达到浓度高值,随后降低。24 a月平均浓度最高值出现在4月,最低值出现在11月。等效黑碳浓度的日变化特征在不同季节表现不同,春、夏、秋季均为双峰特征,峰值出现在凌晨和午后,冬季日变化较为平缓。等效黑碳浓度与风向密切相关,年均浓度最高值出现在东东北风向,次高值出现在东风向。通过浓度权重轨迹方法对黑碳污染气团的潜在来源分析可以看出,污染物主要来自瓦里关站的西南和东南方向。  相似文献   

5.
瓦里关温室气体本底研究的主要进展   总被引:11,自引:0,他引:11  
由于温室气体浓度显著增长及其在气候与环境变化中的作用,国际上众多的科学计划和观测体系都把它们的时空分布、源汇及趋势列为重要内容,获得的各种资料在评价人类活动对气候和环境的影响及有关对策研究中起着关键作用。文章阐述了在中国内陆本底地区开展温室气体长期、定点观测的意义和必要性,系统地讨论了10多年来中国瓦里关本底站温室气体本底研究的主要进展。利用瓦里关经严格国际比对和质量控制的大气CO2、CH4长期观测资料,结合同期的地面风资料进行统计分析,建立了瓦里关大气CO2和CH4本底资料筛选方法;利用本底观测资料,研究了瓦里关大气CO2及其δ13C、CH4和CO本底变化及源汇特征所体现的亚洲内陆地域特点和全球代表性,并进一步与同期、同纬度海洋边界层参比值(MBL)以及北半球其他6个大气本底站同期观测数据对比分析,发现了瓦里关大气CH4和CO独特的季节变化并探讨了成因;根据空气团后向轨迹簇所途经的下垫面源汇同观测的大气CO2和CH4浓度变化之间的关系,探讨了瓦里关大气CO2和CH4的输送来源;利用Hysplit-4扩散与输送模式,计算了冬、夏典型月份人为源和自然生态系统源汇对瓦里关大气CO2浓度变化的贡献。并在现有基础上,提出了有待进一步解决的科学问题。  相似文献   

6.
利用2009—2018年冬季北京地区200多个自动气象站逐时10 m风速、风向观测数据,分典型区域(山区、山区与平原过渡区、平原区、城区)研究北京地区冬季近地面风的精细特征,并使用有完整记录的2 a(2017和2018年)冬季延庆高山区不同海拔高度10 m风逐时观测数据,多视角分析高山区不同海拔高度近地面风的特征和成因,以深刻认识北京地区复杂地形条件下冬季近地面风的特征和规律。结果表明:(1)北京地区冬季近地面平均风受西部北部地形、城市下垫面粗糙度和冷空气活动共同影响,平均风速沿地形梯度分布,山区高平原低,平原中又以城区风速最小;盛行西北风和北风,在城区东、西两侧盛行风出现扰流,在山区和过渡区一些地方还存在与局地地形环境明显关联的其他盛行风向。(2)4个典型区域冬季近地面风速日变化均表现为白天风速大于夜间,午间风速最大的“峰强谷平”单峰特征,这一特征的稳定性在城区高、山区低。(3)4个区域冬季弱风(< 1 m/s)频率为31%—42%,城区较高、山区较低;强风(> 10.8 m/s)频次则是山区多、城区少,强风风向主要表现为偏西—偏北,与冷空气活动密切关联;城区、平原区和过渡区偏南风频率均为极小,暗示北京“山区—平原”风模态在冬季是“隐式”的、不易被直接观测到。(4)近地面风的水平尺度代表范围在延庆高山区高海拔处明显大于低海拔处,海拔1500 m附近(平均的边界层顶高度)是延庆高山近地面风速日变化特征的“分水岭”,低于该海拔高度时近地面风速日变化表现为前述“峰强谷平”单峰特征,而高于该海拔高度时近地面风速日变化则呈现相反特征,即夜间大白天小、午间最小的“峰平谷深”特征,这是由边界层湍流活动的日变化及伴随的低层自由大气动量向边界层内下传所致。(5)延庆高山近地面风速大体上随观测高度而增大,高海拔站点日平均风速数倍于低海拔站点。白天—前半夜,海拔约2000 m的站点冬季盛行偏西风,风向变化不大,但风速为2—12 m/s;1000 m左右的低海拔站则风速比较稳定(< 6 m/s),风向从午间至傍晚相对多变。   相似文献   

7.
为研究石家庄秋季对流层内CH4垂直分布特征,2018年9月使用“空中国王350”飞机搭载Picarro温室气体在线观测仪和气象要素观测设备,对石家庄上空(600—5500 m)CH4浓度进行探测。探测期间共飞行7架次,取得7条CH4浓度廓线数据。结果表明: 石家庄上空近地面层(1000 m以下)CH4平均浓度与同时间段区域背景站上甸子站CH4浓度呈显著正相关(r=0.81,P < 0.03)。探测到的CH4浓度最小值为1898×10-9摩尔分数,最大值为2219×10-9摩尔分数,平均浓度为1981×10-9摩尔分数。观测得到的7条廓线均有较好的一致性,2000 m以上,浓度均随高度呈先增大后减小的趋势。利用后向轨迹模式(HYSPLIT)对探测时段内石家庄上空不同高度层主要气流传输路径进行统计分析表明,600 m高度输送路径较短,CH4浓度受本地排放影响较大; 3000 m受输送作用影响较大,偏西和西南路径可能将较高CH4浓度气团输送至石家庄上空; 5000 m气团传输对CH4浓度影响较小,浓度相对较稳定,对传输路径的变化不敏感。  相似文献   

8.
我国西部清洁大气中SO2 和NO2的观测和分析   总被引:10,自引:2,他引:10       下载免费PDF全文
在我国青海省瓦里关大气本底基准观象台(海拔3810 m,100°54′E,36°17′N),利用浸渍膜法采集大气中的SO2和NO2,使用离子色谱分析其浓度。1994年8月至1995年7月的测量结果表明,SO2和NO2的平均浓度分别为0.147×10-9和0.055×10-9,SO2和NO2两者具有较好的相关性,其相关系数r=0.87,它们的平均比值为2.6左右。SO2和NO2的浓度受季节和风向的影响,偏东风时浓度较高,偏西风时浓度较低。冬季SO2和NO2的浓度水平较低,而夏季浓度较高。  相似文献   

9.
1961~2010年河北省地面风变化特征及成因探讨   总被引:1,自引:0,他引:1  
利用1961~2010年河北省73个地面气象站风观测资料,结合NCEP/NCAR(2.5°×2.5°)月平均再分析资料和国家气候中心下发的环流指数,采用线性趋势拟合方法,分析地面风速的空间分布以及风速和最大主风向风频的时间变化特征,并对风速减小的成因进行探讨。结果表明:空间上风速呈东北西南向带状分布,依次有大、小、大3个风速带。年平均风速呈减小趋势,减小速率为0.207 m·s-1/10 a;3.0 m/s以下的风速日数呈明显增加趋势,8.0 m/s以上的日数呈显著减小趋势,3.0~8.0 m/s风速的日数没有明显变化趋势。代表站最大主风向为偏南风,最大主风向风频平均每年增加0.54 d。风速的减小与1980年代以后影响我国的环流经向度减小、西风指数增加有关,也与城市化效应的影响有关。  相似文献   

10.
通过对1 9 9 3年9月~2 0 0 3年1 1月瓦里关地区(3 6.1 7°N,1 0 0.5 3°E)Brewer资料和TOMS资料的比较分析,结果表明:1)瓦里关Brewer臭氧光谱仪的观测数据与卫星的TOMS观测数据之间存在一定的差异,两者的差异8 0%以上集中在-2.5%~2.5%之间;2)1 9 9 3~2 0 0 3年瓦里关地区的大气臭氧总量有着明显的下降趋势,这与北半球中纬度地区观测到的平流层臭氧减少的趋势相吻合;3)瓦里关地区大气臭氧总量存在明显的年际变化和季节变化,且每年的2~4月较高,8~1 0月较低,一年中振荡的幅度达到6 0 DU;4)TOMS两个版本的观测数据与地面观测结果呈现出较好的一致性和相关性,相关系数达到0.9以上。  相似文献   

11.
地气之间物质和能量随湍流运动进行输送,涡度相关技术是研究地气交换过程和评估大气资源的重要手段,它对湍流特征和精确的通量观测研究具有重要的作用.本研究利用拉萨蔡公堂通量站的闭路涡度相关系统,观测了 2020年8-11月青藏高原东部拉萨河下游地区典型高寒草甸下垫面的通量特征,并分析了该区域生长季和非生长季不同大气稳定条件下...  相似文献   

12.
利用2015—2017年唐山市空气质量日空气质量指数、小时PM2.5浓度和气象数据,分析了唐山市重污染特征及PM2.5重污染生成、消散气象条件。结果表明:2015—2017年唐山市重污染天数为减少趋势,年平均重污染天数36 d。冬季发生重污染天数最多,秋季次之。重污染天气中首要污染物为PM2.5、PM10和O3,PM2.5为首要污染物占比87%,PM10占比6%,O3占比7%。小时PM2.5浓度与相对湿度、总云量、24 h变温正相关,与风速、气温、风向、1 h降水负相关。冬季相关性最好,其次是秋季和春季。90%PM2.5重污染相对湿度均为50%以上,冬季和秋季高达98%;风速大于4 m·s-1时,有0.7%的PM2.5达到重污染;降水对PM2.5有一定清除作用。升温、湿度增加和负变压有助于污染天气形成,生成过程中平均风速为1.8 m·s-1,主导风向为SW,其次是S、W。降温、湿度下降、正变压、降水有助于污染天气消散,消散过程中平均风速为3.1 m·s-1,主导风向为E,其次是NE、N。各方位3 m·s-1的风具有清除能力,偏北风具有较好清除能力,风速较其他方向风速小。  相似文献   

13.
利用2018年10月1日至2019年9月30日沈阳地区三个高度大气颗粒物浓度和气象要素逐时观测资料,分析了不同高度颗粒物浓度时间变化特征及其与气象要素的关系。结果表明:不同高度的颗粒物浓度均存在明显的季节变化,秋冬季数值明显高于春夏季。冬季,三个高度的PM2.5平均浓度为54.98±12.67 μg·m-3、63.77±15.1 μg·m-3和39.27±5.62 μg·m-3,即15 m > 1.5 m > 90 m,秋季对应高度的浓度值则为1.5 m > 15 m > 90 m,春季对应高度的浓度值1.5 m≈15 m>90 m,夏季对应高度的浓度值15 m > 90 m > 1.5 m。PM2.5、PM10和TSP浓度的日变化在秋冬季三个高度上均呈明显的双峰,春季则均为单峰,夏季15 m高度为单峰,其余两层无明显规律。月平均颗粒物浓度的变化在冬、夏半年之间存在明显差异。冬半年,1.5 m高度PM2.5、PM10和TSP以及90 m高度PM2.5月平均浓度均表现为增—减—增—减的变化特征,而15 m高度月平均PM2.5、PM10和TSP浓度以及90 m高度月平均PM10、TSP浓度均为先增后减的变化特征。冬半年和夏半年颗粒物浓度最大值分别出现在1月和6月,冬半年最低两层高度的颗粒物浓度明显高于90 m的值,夏半年各月不同高度颗粒物浓度相差不大,均远低于冬半年的浓度值。不同粒径范围的颗粒物浓度与风速和气温均呈负相关关系,且相关系数随高度增加而增加,随颗粒物粒径范围增加而变小;与相对湿度的关系较为复杂,相关系数随观测高度增加和颗粒物粒径范围的增大而有所不同。  相似文献   

14.
基于观测的污染气体区域排放特征   总被引:2,自引:2,他引:0       下载免费PDF全文
利用2006年9月—2007年8月河北省固城生态与农业气象试验基地 (固城站) 反应性气体观测数据获得了CO与NOx,CO与SO2,SO2与NOx体积分数比的变化特征,并将观测得到的体积分数比与从INTEX-B等排放源资料得到的排放比进行比较研究。当风向来自北方向 (北京) 时,固城站的CO和NOx体积分数显著高于其他方向,而来自南方向 (保定、石家庄) 时,SO2体积分数显著高于其他方向。固城站观测到的CO与SO2,CO与NOx体积分数比分别为43.7和31.6,较排放比高出2~12倍。分析表明:排放源清单对CO排放低估了大约2倍以上,生物质燃料燃烧,尤其是收获季节大规模秸秆燃烧排放可能是重要的且被低估了的源。从观测数据估计得到秸秆燃烧期比平时CO大约多排放了90%±30%,忽略秸秆燃烧期额外排放对CO排放强度估计有重要影响。未来排放源清单编制和使用需要更加关注我国农业区秸秆燃烧排放对排放强度的影响。  相似文献   

15.
风廓线雷达对塔克拉玛干沙漠晴天边界层的探测分析   总被引:2,自引:0,他引:2  
王敏仲  魏文寿  何清  郑伟  胡文峰 《气象》2012,38(5):577-584
利用塔克拉玛干沙漠大气环境观测试验站2010年8和10月边界层风廓线雷达资料,分析了沙漠晴天边界层湍流、大气温度、水平风速风向以及垂直速度的发展演变特征和日变化规律。研究表明:(1)大气折射率结构常数(C_n~2)能较好地反映晴空湍流对电磁波的后向散射能力,可以详细刻画湍流发展旺盛区域的高度、强度及其演变特征;沙漠夏季白天湍流发展剧烈,旺盛区域顶部可达4000 m高度左右。(2)RASS系统对沙漠边界层大气温度的探测具有较好的可信度,其近地边界层温度符合一般的日变化规律,昼夜温差显著,白天高温维持时间长,升温过程相对滞后于近地表气温。(3)风廓线雷达对大气风场的探测结果与地面风速风向一致,沙漠晴天主要受东风和东北风控制,风速较小,平均在2.0~6.0 m·s~(-1)范围变化。(4)沙漠腹地大气垂直速度变化符合静力平衡理论,铅直方向运动很弱,一般在-1.0~1.0 m·s~(-1)范围波动。  相似文献   

16.
2017年12月22日至2018年1月18日利用无人机携带温、湿和颗粒物浓度探测仪对南京地区灰霾污染条件下大气边界层垂直结构开展加密观测。通过比较不同灰霾污染条件下温度、湿度和PM2.5(直径小于2.5微米的颗粒物)浓度的垂直结构差异,结合地面热通量、2米空气温度、相对湿度、风速、风向及主要大气污染物(如臭氧和PM2.5)浓度,定量评估了气溶胶辐射效应对边界层和夹卷过程的影响。分析表明,灰霾或气溶胶削弱到达地表太阳辐射,减小地表感热通量,延迟边界层发展,增加近地层大气稳定度,降低边界层高度,并加重灰霾污染。灰霾污染物在混合层顶处累积,导致PM2.5浓度最大变化出现在边界层顶部而不是近地层。气溶胶辐射效应对夹卷特征及其特征参数有重要影响。灰霾浓度升高时,夹卷区厚度增加;无量纲化夹卷速度随对流理查逊数的变化不再符合负1次方幂函数关系,与大涡模拟结果一致。本研究进一步指出,为提高重霾污染条件下天气和空气质量数值预报水平,必须考虑气溶胶辐射效应对边界层和夹卷参数化的影响。  相似文献   

17.
利用多源观测资料综合分析了2015年11月沈阳地区一次PM2.5 重污染天气的气象条件、垂直风场演变、大气边界层特征以及污染物的来源。结果表明:本次重污染过程中,沈阳市区PM2.5浓度长达81h超过250μg · m^-3 ,其中峰值浓度达到1287μg · m^-3 ,重污染期间PM2.5 /PM10 的比例最高为90%。受地面倒槽和黄淮气旋影响,近地面层持续存在的逆温层、高相对湿度和弱偏北风为颗粒物吸湿增长和长时间聚集提供有利的天气条件。风廓线雷达风场资料显示在重污染期间,近地面层存在弱风速区、凌乱风场和弱下沉气流。利用风廓线雷达资料计算了边界层通风量(Ventilation Index,VI)和局地环流指数(Recirculation,R),边界层通风量VI和PM2.5 存在明显的负相关,非污染日VI是重污染日的2倍,局地环流指数R在重污染天气前大于0.9,而在污染期间部分空间R小于0.8。通过后向轨迹模式和火点监测资料分析发现,沈阳上空300m高度气团来自于生物质燃烧区域,而且沈阳地区NO2和CO浓度的变化与PM2.5一致,说明本次重污染过程也可能和生物质燃烧有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号