首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了了解PM_(2.5)的污染与地面气象因子的相关性,通过对招远市PM_(2.5)的月均浓度与降水量、湿度、风速和气压等气象因子关系分析,结果表明:(1)PM_(2.5)浓度存在明显的季节变化,冬季与气象因子相关性最好,夏季最差。(2)PM_(2.5)浓度与相对湿度、平均风速和降水有很强的负相关性。(3)PM_(2.5)浓度与本站气压呈现正相关性。  相似文献   

2.
基于2013年武汉市环境监测数据和气象要素资料,分析该市空气质量状况与气象条件的关系。结果表明,武汉市全年平均空气质量指数(AQI)为135,良和轻度污染所占比例分别为35%和30%。雾天、霾天、晴天、雨天四种天气条件下,6种污染物(SO_2、NO_2、CO、O_3、PM_(2.5)和PM_(10))浓度值基本上为雾天最高、霾天次之、晴天再次之、雨天最低,雾天00—08时污染物浓度明显高于其他天气条件;PM_(2.5)浓度与降水量的相关性较差,中雨量级时,降水对污染物的清除作用显著,PM_(2.5)浓度下降明显,当日降水量小于1 mm时,PM_(2.5)浓度略有上升,平均上升1.3μg·m~(-3)左右,这与微量降水的大气增湿作用有关;PM_(2.5)浓度变化与相对湿度(RH)和风速的关系较明显,其相关系数分别为0.87和-0.72,当RH70%且每增加10%时,PM_(2.5)浓度增加10μg·m~(-3)左右;静风和风速很大时,污染物浓度相对较高,东南风影响下PM_(2.5)浓度在四季均较高,而秋、冬季在西北风影响下PM_(2.5)浓度最高;PM_(2.5)浓度主要增长阶段以正变温、负变压为主。  相似文献   

3.
利用2013—2014年银川地区大气颗粒物质量浓度和同期气象要素的观测资料,分析了银川地区大气颗粒物浓度的分布特征及其与气象条件的关系。结果表明:2013—2014年银川地区PM_(10)、PM_(2.5)、PM1年平均浓度分别为167.3μg·m-3、67.2μg·m-3和45.0μg·m-3,年平均PM_(2.5)/PM_(10)、PM1/PM_(10)、PM1/PM_(2.5)分别为45.0%、32.0%和65.0%;PM_(10)浓度3月最高,8月最低,PM_(2.5)和PM1最高浓度均出现在1月,PM_(2.5)最低浓度出现在8月,PM1最低浓度出现5月;3—5月为PM_(2.5)/PM_(10)、PM1/PM_(10)和PM1/PM_(2.5)最低的3个月。不同天气类型PM_(10)浓度由高至低依次为浮尘/扬沙典型天气平均霾晴天雾,不同天气类型PM_(2.5)浓度由高至低依次为扬沙/浮尘霾典型天气平均晴天雾,不同天气类型PM1浓度由高至低依次为霾典型天气平均雾晴天浮尘/扬沙。风速与PM_(10)浓度呈正相关关系,风速与PM_(2.5)和PM1浓度均呈负相关关系;PM_(10)浓度在偏西北风时较高,PM_(2.5)和PM1浓度在偏西南风与偏东北风时较高;气温与PM_(10)、PM_(2.5)、PM1浓度均呈显著的负相关关系;相对湿度与PM_(10)浓度呈显著的负相关关系,相对湿度与PM1浓度呈显著的正相关关系,相对湿度与PM_(2.5)相关性较弱;气压对PM_(10)浓度变化的影响较小,气压与PM_(2.5)、PM1浓度呈正相关关系;降水对PM_(10)的清除作用最强,对PM_(2.5)的清除作用次之,对PM1基本无清除作用。  相似文献   

4.
结合贵阳基准站气溶胶质量浓度观测中出现的数据异常情况,提出相应质控措施,编写小时数据检查程序以提醒值班员及时查看报警原因,尽量减少原始数据的缺失及野值的产生。采用7-5-3hanning平滑滤波法,将处理后的PM_(2.5)数据与原始分钟数据比对,结果显示该方法在剔除异常值的同时保留了原序列应有的变化特征。利用2013—2016年本站PM_(2.5)质控数据及同期气象资料对PM_(2.5)质量浓度的变化特征进行了简要分析,结果表明,PM_(2.5)月均浓度呈现明显的冬高夏低的单谷多峰走势;以2013年1月一次连续9 d以PM_(2.5)为首的空气污染时段为例就PM_(2.5)质量浓度与同时段气象要素的相关性进行分析,数据显示PM_(2.5)与风速、降水呈明显负相关性,即风速越大,PM_(2.5)浓度越小,降水对净化空气作用明显,PM_(2.5)浓度明显降低。  相似文献   

5.
姚青  刘敬乐  韩素芹  樊文雁 《气象》2016,42(4):443-449
利用天津城区2009-2014年春节期间大气气溶胶观测资料和相关气象资料,重点分析2013和2014年春节期间气溶胶污染特征,探求燃放烟花爆竹以及气象条件对春节期间大气气溶胶的影响。结果表明,受燃放烟花爆竹影响,春节期间PM_(2.5)质量浓度最高值均发生在除夕夜间;持续雾霾天气条件下燃放烟花爆竹,造成2013年除夕夜间PM_(2.5)质量浓度峰值达到1240μg·m~(-3),是近年来最严重的一次;2014年春节期间烟花爆竹燃放量有所减少,加之空气扩散条件较为有利,PM_(2.5)质量浓度显著低于2013年;不同天气条件下,气溶胶数浓度谱分布特征存在明显差异,燃放烟花爆竹期间气溶胶数浓度水平与严重雾-霾天气相当。  相似文献   

6.
为深入了解晋城市颗粒物浓度时空分布特征,对晋城市2017年12月至2018年5月国控点、小型站和微型站PM_(2.5)及PM_(10)小时浓度数据进行收集整理,并进行空间插值分析和时间变化趋势分析及与气象监测数据的相关分析。结果表明:颗粒物浓度在冬、春季节具有明显差异,冬季PM_(10)与PM_(2.5)高值区主要位于东北部及东南小部分区域,春季PM_(10)高值区位于城区南部区域,PM_(2.5)高值区主要集中于城区。晋城市城区和郊区PM_(10)与PM_(2.5)月均浓度整体呈单峰型变化,PM_(10)在4月份最高(157.54±5.67μg·m~(-3)),PM_(2.5)在1月份最高(94.08±2.25μg·m~(-3))。冬季PM_(2.5)/PM_(10)平均为0.57,春季平均为0.45。颗粒物小时浓度的变化呈现单峰单谷的型式,冬季PM_(10)与PM_(2.5)小时平均浓度最高值均出现在10时,春季均出现在09时。监测期间晋城市PM_(10)与PM_(2.5)的小时浓度值与相对湿度有较高的正相关性(p0.01),与风速、风向有较高的负相关性(p0.01),与温度和气压的相关性较低。冬季,东北至正南风向时,PM_(10)与PM_(2.5)的浓度普遍高于西北风向时的浓度,对晋城冬、春季国控点颗粒物浓度贡献率最高的风向风速为东南偏南风向,风速在1 m/s以内。  相似文献   

7.
利用2014—2016年宁波市镇海地区逐时气象观测资料和大气成分监测资料,对宁波地区霾天气的变化特征进行统计分析。结果表明:2014—2016年宁波地区霾天气小时出现频率为28.8%,湿霾出现频率为61.0%。近3 a宁波地区霾天气小时出现频率呈下降趋势,秋冬季(11月至翌年1月)霾天气小时出现频率较高,夏季(6—8月)霾天气小时出现频率较低;从日变化来看,霾天气小时出现频率峰值集中出现在上午09时和夜间20—23时。宁波地区重度霾的PM_(2.5)、PM_(10)颗粒物浓度为轻微霾的2.13倍和1.92倍,干霾颗粒物浓度高于湿霾,宁波地区霾天气的颗粒物组成较稳定,PM_(2.5)/PM_(10)比重为0.7左右。宁波地区颗粒物浓度与风速和降水量的相关性较好,春季和夏季风速与PM_(2.5)浓度的相关性较高,秋季和冬季风速与PM_(10)浓度的相关性较高;降水与PM_(10)浓度的相关性高于PM_(2.5)浓度。静稳天气时地面风速小易造成细颗粒物浓度的积累增长,冬季西北偏北风和东北风是影响宁波地区PM_(2.5)浓度变化的重要输送路径,当风向为西北风时,冬季和春季PM_(10)浓度增加明显。  相似文献   

8.
利用2009-2018年桂林大气成分站的大气气溶胶质量浓度观测资料,分析了PM_(10)、PM_(2.5)、PM_1统计值的变化规律,结果表明:(1)2009-2018年桂林ρ(PM_(10))、ρ(PM_(2.5))、ρ(PM_1)年平均值变化趋势基本相同,2012-2014年,年平均值相对较高,自2015年后有下降的趋势。一年中月变化基本呈冬高夏低的正V字型分布,月平均峰值出现在1月,谷值出现在7月。质量浓度小时平均值从数值上呈现出冬春秋夏的趋势,并呈现明显的双峰分布特征。ρ(PM_(2.5))/ρ(PM_(10))、ρ(PM_1)/ρ(PM_(10))、ρ(PM_1)/ρ(PM10_(2.5))介于60%-93%之间,说明全年可吸入颗粒物中细粒子占大多数。桂林大气气溶胶质量浓度月平均分布规律可能与天气气候特点有密切关系,日变化主要受到气象条件和污染物排放的影响。(2)桂林ρ(PM_(10))、ρ(PM_(2.5))和ρ(PM_1)与日均气温、日均湿度、日降水量、日均风速显著负相关,与日均气压显著正相关。中雨及大雨、暴雨可明显稀释污染物的浓度,细颗粒物易被雨水冲刷清除。2级以上的风力对于污染物有一定的驱散作用,尤其粗颗粒物下降的程度较明显。  相似文献   

9.
利用2016—2018年重庆市荣昌区冬季PM_(2.5)质量浓度监测数据,结合地面气象观测资料、L波段探空雷达资料、ERA-Interim再分析资料及全球资料同化系统(GDAS)数据,并与HYSPILT模型相结合,分析荣昌区冬季PM_(2.5)污染的气象影响因素及区域传输特征。结果表明:(1)2016—2018年荣昌区冬季PM_(2.5)污染超标频率高达56.3%,但空气质量有好转趋势。PM_(2.5)质量浓度日变化有2个峰值,分别出现在12:00和23:00;(2)荣昌区冬季PM_(2.5)污染主要受降水、逆温层、低层风速等气象条件影响。当925 hPa以下和700~600 hPa存在明显逆温层结,500 hPa呈西北气流或平直西风气流,850 hPa以下为偏东北弱风时不利于PM_(2.5)扩散,易发生重度污染天气。日降水量R>2.0 mm时,降水对PM_(2.5)具有明显的正清除,且清除能力随着降水等级的增大而增大,R<1.0 mm时,降水对PM_(2.5)表现为负清除,微量降水期间不利的扩散条件加之颗粒物吸湿增长作用反而导致PM_(2.5)质量浓度增加,空气质量恶化;(3)荣昌区冬季PM_(2.5)污染主要受距离荣昌区西北和东北方向约300 km范围内的成渝城市群城市间污染物区域输送影响,外域颗粒污染物的传输是荣昌区冬季PM_(2.5)污染的重要原因。  相似文献   

10.
基于京津冀地区80个环境监测站PM_(2.5)浓度逐时监测资料和气象观测资料,以2016年12月16—21日和2017年1月1—7日雾和霾天气为例,分析PM_(2.5)浓度演变的气象条件。结果表明:气象条件在北京地区污染物浓度爆发性增长过程中具有重要作用。北京地区12月19—20日PM_(2.5)浓度出现爆发性增长,小时浓度在8 h内上升201μg·m~(-3),主要是边界层南风分量由地面增厚至700 m,700 m以上弱下沉抑制作用,结合地面辐合线维持所致;20—21日北京地区PM_(2.5)浓度维持高值且无日变化,是由于低空1.5 km出现弱回暖,逆温层显著增厚增强且无明显日变化,导致高浓度气溶胶无法有效扩散。综合来看,2016年12月16—21日污染物浓度爆发性增长的原因以外源性污染物输送为主;2017年1月3—4日污染物浓度爆发性增长原因与局地极端不利扩散条件及污染排放等其他因素有关。  相似文献   

11.
利用2014年本溪市大气颗粒物质量浓度监测资料和风速、气温、相对湿度、气压等常规地面气象要素观测资料,分析了本溪地区大气颗粒物质量浓度的月、季变化特征及其与气象要素的相关性。结果表明:2014年7月和10月本溪市大气颗粒物质量浓度较高,5月和9月大气颗粒物质量浓度较低,6月和11月大气颗粒物质量浓度比值较高。夏季PM10质量浓度较低,平均浓度为115.1μg·m~(-3);冬季PM_(2.5)和PM_(1.0)质量浓度较高,平均浓度分别为99.5μg·m~(-3)和86.1μg·m~(-3)。春季和冬季平均风速与大气颗粒物质量浓度的相关性最好,夏季和冬季相对湿度与大气颗粒物质量浓度的相关性最好。当ρ(PM_(2.5))≥200.0μg·m~(-3)时,ρ(PM_(2.5))与平均气温呈显著的正相关关系,相关系数为0.5288,ρ(PM_(2.5))与相对湿度的相关系数也高达0.6981,高温、高湿和小风等气象条件是本溪地区大气颗粒物高质量浓度事件发生的有利气象条件。  相似文献   

12.
蔡敏  严明良  包云轩 《气象科学》2018,38(5):648-658
为了探明PM_(2.5)中水溶性无机离子的来源和气象因子对其浓度变化的影响,利用2012年2、5、8和11月苏州市PM_(2.5)中水溶性无机离子浓度和本站气象观测数据,分析了苏州市水溶性无机离子的时间变化特征,解析了当地PM_(2.5)中水溶性无机离子的主要来源,探讨了气象因素对离子组分的影响。结果表明:(1)苏州市PM_(2.5)中水溶性无机离子年均浓度大小依次为:SO_4~(2-)NO_3~-NH_4~+Na~+Cl~-K~+Ca~(2+)Mg~(2+)F~-;SO_4~(2-)、NH_4~+和NO_3~-为PM_(2.5)中最重要的3种水溶性无机离子物种,其总和占PM_(2.5)总质量浓度的50.9%。各离子的季节浓度特征均为冬季最高、夏季最低。(2)通过运用主成分分析法对苏州市PM_(2.5)中水溶性无机离子进行来源分类解析,发现第一类为二次污染源和生物质燃烧,其贡献率为32.84;第二类为道路扬尘及工业排放,其贡献率为19.99%;第三类为海盐污染,其贡献率为18.43%。(3)通过水溶性无机离子与气象条件的相关性分析发现,风向、风速和温度与水溶性无机离子浓度的相关性较显著,这三者是颗粒物浓度变化的主要影响因子。(4)利用HYSPLIT后向轨迹模式对外来污染物进入苏州市的轨迹进行聚类分析后发现:因受季风气候影响,苏州市外来污染物的输入路径存在明显的季节性变化特征,其中夏半年输送主径源自海上,冬半年主径源自内陆。  相似文献   

13.
利用东莞2014年12月—2015年2月地面风向、风速等气象要素、PM_(2.5)质量浓度等监测数据以及NOAA的NCEP/NCAR再分析资料,分析了极端PM_(2.5)质量浓度出现的天气类型。结果表明:东莞旱季极端PM_(2.5)质量浓度均出现在冷空气影响后,主要影响系统是减弱或变性的地面冷高压;该天气类型可以被划分为3种子类型:冷空气影响后、弱冷高压主体控制和冷空气影响末期;影响的气象因素主要有地面风切变线或辐合线、地面静小风状态、对流层低层弱的垂直风切变、较强的垂直逆温层和夜间稳定边界层。  相似文献   

14.
为了解成都市PM_(2.5)污染特征及其与地面气象要素的关系,利用环境空气质量监测资料和地面气象观测资料,分析了PM_(2.5)质量浓度的季节、月和日变化特征,并分不同空气质量等级分析空气质量与地面气象要素的关系。结果表明:PM_(2.5)质量浓度具有明显的季节、月和日变化特征,且成都市区6个监测站的变化趋势比较一致;成都市相对湿度较大,地面风速较小,约62%的样本分布在相对湿度80%~100%,约85%的样本分布在地面风速0~2 m·s~(-1),地面风速对成都市PM_(2.5)的水平输送、扩散、稀释不利;降水对PM_(2.5)的清除量随PM_(2.5)初始浓度、降雨持续时间和累积降雨量增加而增大。  相似文献   

15.
文章以2013年为基准年对京津冀地区2014–15年的PM_(2.5)浓度变化趋势作了分析,并结合区域空气质量模式NAQPMS研究了气象条件和大气控制措施对PM_(2.5)浓度变化的贡献。研究结果表明:京津冀地区2014–15年PM_(2.5)年平均浓度较2013年有明显下降,其中:南部城市(邢台、邯郸、石家庄和沧州)PM_(2.5)浓度下降由气象条件和排放源控制共同作用,排放源控制起主导作用;天津市和廊坊市2014年PM_(2.5)浓度下降有赖于排放源控制,气象条件总体不利于污染物扩散,2015年则由气象条件和排放源控制共同作用,以排放源控制为主导作用;受制于不利气象条件影响,北京市PM_(2.5)浓度下降幅度较其它污染城市更小(2014和2015年分别为4%和9%)。在采暖季和非采暖季的对比中,2015年采暖季期间,整个区域重污染下的PM_(2.5)浓度下降幅度显著大于其它时期,这表明当前该区域大气污染治理正朝精细化的方向发展。  相似文献   

16.
通过综合运用micaps、自动站等气象资料,以及环境监测污染物浓度和AQI指数等资料,对2013—2015年廊坊市的连续重污染天气进行了分析,并细致分析探讨了在空气达到重污染背景下,气温、风向、风速、相对湿度等气象要素和多种空气污染物指数的分布特征。结果表明:(1)连续重污染具有明显的季节性特点,秋季开始出现,冬季达到顶峰,随着次年春季的到来逐渐减少至消失;(2)连续重污染的出现将导致气温升高,此时风向多为西南风—西风和偏东风,平均风速以0.3~1.5m·s^(-1)为主,最大风速多在1.6~3.3m·s^(-1)之间,相对湿度以60%~70%为最高发区间;(3)连续重污染天气的首要污染物为PM_(2.5)或PM_(10),其中以PM_(2.5)为主,比例高达94.3%,且呈逐年小幅下降趋势;(4)CO和SO_2浓度变化与采暖期污染物排放关系密切;(5)5月出现的连续重污染较少,且由大风沙尘天气造成。  相似文献   

17.
依据吐鲁番市2015年3月—2016年2月的PM_(10)、PM_(2.5)和气象资料,利用统计分析,探讨吐鲁番市PM_(10)和PM_(2.5)浓度的变化特征及其与气象要素的关系。结果表明:冬季PM2.5与PM10浓度的平均值最高(106 ug/m3、184 ug/m~3),春季次之(63 ug/m~3、163 ug/m~3),夏季最低(33 ug/m~3、95ug/m~3),且冬季二者浓度的平均值比夏季分别高大约69%、48%。11月至次年2月,每个月中PM_(2.5)和PM_(10)的污染程度在轻度污染以上的天数相比其它月份较多。PM_(10)与PM_(2.5)的日变化曲线特征呈现"双峰双谷"的特点;PM_(2.5)与PM_(10)的比值在冬季达到了60%~80%,这说明吐鲁番冬季主要以PM2.5污染为主;PM_(2.5)和PM_(10)与能见度之间存在极其显著的相关性,相关系数分别为-0.904、-0.792,与单一气象要素(如相对湿度、风速、温度等)的相关性不明显,但不同气象要素的共同作用对其有显著影响。  相似文献   

18.
依据吐鲁番市2015年3月—2016年2月的PM_(10)、PM_(2.5)和气象资料,利用统计分析,探讨吐鲁番市PM_(10)和PM_(2.5)浓度的变化特征及其与气象要素的关系。结果表明:冬季PM2.5与PM10浓度的平均值最高(106 ug/m3、184 ug/m~3),春季次之(63 ug/m~3、163 ug/m~3),夏季最低(33 ug/m~3、95ug/m~3),且冬季二者浓度的平均值比夏季分别高大约69%、48%。11月至次年2月,每个月中PM_(2.5)和PM_(10)的污染程度在轻度污染以上的天数相比其它月份较多。PM_(10)与PM_(2.5)的日变化曲线特征呈现"双峰双谷"的特点;PM_(2.5)与PM_(10)的比值在冬季达到了60%~80%,这说明吐鲁番冬季主要以PM2.5污染为主;PM_(2.5)和PM_(10)与能见度之间存在极其显著的相关性,相关系数分别为-0.904、-0.792,与单一气象要素(如相对湿度、风速、温度等)的相关性不明显,但不同气象要素的共同作用对其有显著影响。  相似文献   

19.
利用2011—2015年西安市城区PM_(10)浓度逐日资料及气象逐日观测数据,分析西安市PM_(10)浓度的年、季变化特征,并探讨气温与PM_(10)浓度的相关性及冬夏季节气温对PM_(10)浓度影响的阈值,不同等级、形态的降水对PM_(10)浓度的清除率,以及冬春季节风速对PM_(10)浓度的影响。结果表明:2011—2015年,西安市PM_(10)浓度变化较平稳,仅2013年出现骤增,高温、少雨、风速小等不利气象条件是导致2013年PM_(10)浓度剧增的主要原因。PM_(10)浓度有明显的季节性变化,PM_(10)大气污染主要发生在春冬季节,污染物分别以沙尘和煤烟为主。PM_(10)浓度与气温并非是简单的线性关系,夏季、冬季气温阈值分别为29℃和-1℃,低于阈值时二者呈正相关,高于阈值时则呈负相关。PM_(10)浓度与降水量成反比,但降水对PM_(10)的清除率永远不等于1;同一形态的降水清除能力与其量级呈正相关,同等级的固态降水比液态降水对PM_(10)的清除率高;一次降水过程中,PM_(10)浓度最低值往往出现在日降水峰值的次日;连续性降水过程中,PM_(10)浓度随着降水量自峰值的减弱而升高,当降水量再次增大时PM_(10)浓度便再次降低;间断性降水过程中,降水一旦停止,PM_(10)浓度将会有一定程度的升高,并有可能高于降水前的浓度值。春季大风沙尘天气易造成PM_(10)浓度增高,冬季PM_(10)浓度与风速呈明显反比关系。  相似文献   

20.
江苏淮安地区大气污染变化特征及其与气象条件的关系   总被引:1,自引:0,他引:1  
采用江苏省淮安市地面5个监测站2013年1月1日—2015年12月31日PM_(10)、PM_(2.5)、SO_2、NO_2、CO、O_3逐日质量浓度资料及同期气象资料,统计分析了该地区空气污染季节变化特征及其与气象条件的关系;采用MODIS的光学厚度AOD(Aerosol Optical Depth)资料和火点资料分析了2013年12月发生在淮安的一次持续性大气污染事件。研究结果表明,淮安空气质量AQI指数(Air Quality Index)在春冬季较高,夏秋季较低,污染天气发生在春冬季的概率为23.6%,夏秋季的概率为13.3%。淮安地区的首要大气污染物为颗粒物污染,其中PM_(10)、PM_(2.5)占比分别达到25.2%、48.9%,PM_(10)中PM_(2.5)比率年平均为61.0%,臭氧是第2大污染物,占比为25.8%。表征大气柱气溶胶浓度的AOD的季节变化与地面颗粒物浓度截然不同,颗粒物浓度1月和12月出现极高值,而这两个月AOD月平均值却在一年中达到极低值,AOD最高值出现在7月。另外,AQI与降水、气温、风速、相对湿度呈负相关关系,但相关程度较弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号