首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
东亚和西北太平洋地区气候的准10年尺度振荡及其可能机制   总被引:14,自引:1,他引:13  
本文基于对气候、大气环流和海表水温的资料分析以及简单的理想化海气耦合模式的分析,研究了东亚和西北太平洋地区气候的准10年振荡及其可能机制。研究表明,东亚和西北太平洋地区的气候(降水和地面气温等)和大气环流(环流指数和副高活动等)的演变都有明显的准10年振荡;同赤道太平洋SSTA主要为ENSO循环不同,西北太平洋SSTA主要表现为准10年尺度的振荡,且同气候和大气环流的准10年变化密切相关;中纬度海-气相互作用可产生一种甚低频耦合波(10年左右周期),它可能是海气系统准10年振荡的重要机制之一  相似文献   

2.
杨修群  谢倩 《气象学报》1996,54(6):719-721
利用热带太平洋海气耦合异常模式的30a模拟结果,对模式ENSO的变化性及多重时间尺度过程进行了细致分析,建立了一ENSO循环多重时间尺度过程相互作用的非线性相似(Analog)模型,并提出了ENSO循环主周期形成的一种可能机制。指出:和观测事实类似,模式ENSO过程确实涉及到三种时间尺度,即3—4a主周期振荡(LF)、准两年振荡(QB)和年循环(AC);其中,QB过程是线性海气耦合系统的本征模态,年循环(AC)对其形成没有本质的影响;3—4a主周期振荡(LF)是一非线性系统的自激振荡现象,其形成是线性系统的本征模即QB过程通过非线性机制尤其是通过大气辐合反馈加热的“单向性”过程在QB的暖态产生的减频增幅所致;平均年循环(AC)虽然不能对ENSO循环形成有本质影响,但它可明显影响ENSO循环的具体振幅和位相,使得ENSO循环具有明显的不规则性并对季节循环具有明显的“锁相”特征;ENSO变化性确是LF、QB以及AC多重时间尺度相互作用形成的。本文提出的ENSO循环时间尺度选择机制不仅解释了主周期振荡的形成过程,而且也较好地解释了ENSO变化的谱,因此,这一机制更接近于观测事实。  相似文献   

3.
奇异交叉谱在海气相互作用诊断研究中的应用   总被引:1,自引:0,他引:1  
利用SCSA(奇异交叉谱分析)方法,对中低纬海气及中低纬环流相互作用的耦合同期信号进行分析。结果表明:在3-7年尺度上海气相互作用关系密切,这个尺度与ENSO循环尺度基本一致,且其振荡行为与ENSO根荡相似.从这个意义上说在中低纬海气相互作用中,ENSO是个强信号;中低纬环流相互作用存在10-12年及准4年的优势耦合周期,其中准4年振荡和ENSO循环尺度相一致.这说明中低纬环流相互作用,除受ENSO影响外,自身还存在10年左右的振荡周期。  相似文献   

4.
The data analyses indicated that the occurrence of EL Nino event is closely related to intraseasonal oscillation (ISO) in the tropical atmosphere: The intraseasonal oscillation is very strong in tile tropics (particularly over the equatorial western Pacific) prior to the occurrence of El Nino; But the ISO is evidently reduced and the quasistationary system is enhanced after the outbreak of El Nino. A simple air-sea coupled model study shows that the periodical self-excited oscillation can be produced in the air-sea-coupled system, but the pattern is different from the observed ENSO mode. When there is external (atmospheric) forcing with interannual time scale, a coupled mode, which looks like the ENSO mode, will be excited in the air-sea system. Synthesizing the results in data analyses and the theoretical investigation. the mechanism of ISO in the tropical atmosphere exciting the El Nino event can be suggested : The interannual anomalies (variations) of the tropical ISO play an important role in the exciting El Nino event through the air-sea interaction.  相似文献   

5.
TBO的原因-异常东亚冬季风与ENSO循环的相互作用   总被引:21,自引:3,他引:21  
基于对 NCEP/ NCAR再分析资料以及其他资料(OLR,降水和气温等)的分析研究,结果表明东亚和西北太平洋地区的对流层环流和气候变化都有明显的准两年振荡(TBO)特征。同时,异常东亚冬季风可以影响次年夏季的大气环流和气候变化,特别是在东亚地区;而异常东亚冬季风和ENSO循环间又有明显相互作用:持续的强(弱)东亚冬季风通过海─气相互作用可以激发 El Ni o(La Ni a), El Ni o(La Ni a)反过来又可通过遥相关或遥响应而导致东亚冬季风偏弱(强)。强或弱的冬季风和ENSO循环是相互衔接在一起的,因此可以认为异常东亚冬季风与ENSO循环的相互作用是TBO对流层准两年振荡)的基本原因。  相似文献   

6.
Summary By using a coupled ocean-atmosphere model with an oceanic surface boundary layer, including linear atmospheric and oceanic dynamics and linearized SST prognostic equation with respect to spatially varying climatological background states, we have investigated the eigenvalue problem of the linearized coupled system in the tropical Pacific, including the characteristic periods, horizontal structures, temporal-spatial evolution and instability of the unstable interannual oscillation characteristic modes and their associations with ENSO. The main results show that the quasi-biennial (QB) oscillation was found to act as the most unstable mode in the tropical Pacific coupled air-sea system. Only the most unstable QB mode displays the ENSO-like structure and temporalspatial evolution, and its existence seems likely to have no essential dependence on the climatological annual cycle (AC). Unfortunately, from the linearized coupled system we have not derived a most unstable mode relevant to the observed principle mode with the preferred 3–4 year lower-frequency (LF) oscillation period in the real world ENSO variability. Therefore, we infer that the LF mode would likely result from certain nonlinear interaction, in which the QB mode that acts as the shortest ENSO cycle could be fundamentally important. Also, we believe that the results in present work could be helpful to fully understand the multiple time scales and the associated mechanism responsible for the real world ENSO variability.With 7 Figures  相似文献   

7.
Composite investigation is performed of global dynamic characteristics of 3-4-year period low-frequency oscillation in ENSO variability of air-sea coupling in the context of monthly mean wind and SSTA.Evidence suggests that the horizontal(vertical) anomaly circulation at tropical latitudes (equatorial)exhibits their evolution to be,in substance,a kind of low-frequency wave slowly travelling eastward,featured by wave number 2 moving along the equator and zonal wind swiftly decaying off the equator in relation to divergence/convergence:the time that the low-frequency wave takes to move around the equator in its halfway is precisely the period of the ENSO low-frequency component (LFC) (approximately 4 years);the ocean also displays corresponding response to the component.  相似文献   

8.
The singular value decomposition (SVD) of air-sea interaction in the tropical western,central,and eastern Pacific,and the tropical Atlantic and Indian Oceans has been conducted by using theNCEP/NCAR 40-year reanalysis 1000 hPa monthly wind field and COADS monthly sea surfacetemperature (SST).Comparisons of the results suggest that these areas can be divided into threetypes from the viewpoint of air-sea interaction:tropical central-eastern Pacific belongs to monistictype,in which ENSO is the sole important process;tropical western Pacific and Indian Oceansbelong to dualistic type,in which in addition to ENSO.there should be an another importantprocess;tropical Atlantic Ocean belongs to pluralistic type,in which the process is complicatedand the ENSO cycle is not evident.  相似文献   

9.
The singular value decomposition (SVD) of air-sea interaction in the tropical western,central,and eastern Pacific,and the tropical Atlantic and Indian Oceans has been conducted by using the NCEP/NCAR 40-year reanalysis 1000 hPa monthly wind field and COADS monthly sea surface temperature (SST).Comparisons of the results suggest that these areas can be divided into three types from the viewpoint of air-sea interaction:tropical central-eastern Pacific belongs to monistic type,in which ENSO is the sole important process;tropical western Pacific and Indian Oceans belong to dualistic type,in which in addition to ENSO.there should be an another important process;tropical Atlantic Ocean belongs to pluralistic type,in which the process is complicated and the ENSO cycle is not evident.  相似文献   

10.
Based on the air-sea interface heat fluxes and related meteorological variables datasets recently released by Objectively Analyzed Air-Sea Fluxes (OA Flux) Project of Woods Hole Oceanographic Institution, as well as the outgoing longwave radiation and surface wind datasets from National Oceanic and Atmospheric Administration, the seasonal dependence of local air-sea interaction over the tropical western Pacific warm pool (referred to the region (1o-6oN, 144o-154oE)) is revealed and the probable impacts of remote forcing on the air-sea interaction are examined. The results indicated the dominance of oceanic forcing with the significant impact of ENSO in March and that of atmospheric feedback without notable influence of remote forcing in June. While the interannual variability of sea surface temperature anomaly (SSTA) is larger than that of SSTA tendency when oceanic forcing is dominant, the opposite is true when atmospheric feedback is dominant. The magnitude of the oceanic forcing of the atmosphere tends to decrease in March with the occurrence of ENSO, though ENSO has little influence on the atmospheric feedback to the ocean in June. The local air-sea interaction is substantially the same before and after the removal of the effect of Indian Oceanic Dipole. The reduction of shortwave radiation fluxes into the western Pacific warm pool, due to the enhanced overlaying convection in March associated with ENSO, leads to the decline of SST tendency that will weaken the oceanic forcing of the atmosphere.  相似文献   

11.
State-of-the-art climate models have long-standing intrinsic biases that limit their simulation and projection capabilities.Significantly weak ENSO asymmetry and weakly nonlinear air–sea interaction over the tropical Pacific was found in CMIP5(Coupled Model Intercomparison Project, Phase 5) climate models compared with observation. The results suggest that a weak nonlinear air–sea interaction may play a role in the weak ENSO asymmetry. Moreover, a weak nonlinearity in air–sea interaction in the models may be associated with the biases in the mean climate—the cold biases in the equatorial central Pacific. The excessive cold tongue bias pushes the deep convection far west to the western Pacific warm pool region and suppresses its development in the central equatorial Pacific. The deep convection has difficulties in further moving to the eastern equatorial Pacific, especially during extreme El Ni o events, which confines the westerly wind anomaly to the western Pacific. This weakens the eastern Pacific El Ni o events, especially the extreme El Ni o events, and thus leads to the weakened ENSO asymmetry in climate models. An accurate mean state structure(especially a realistic cold tongue and deep convection) is critical to reproducing ENSO events in climate models. Our evaluation also revealed that ENSO statistics in CMIP5 climate models are slightly improved compared with those of CMIP3. The weak ENSO asymmetry in CMIP5 is closer to the observation. It is more evident in CMIP5 that strong ENSO activities are usually accompanied by strong ENSO asymmetry, and the diversity of ENSO amplitude is reduced.  相似文献   

12.
一种新的ENSO循环负反馈机制   总被引:5,自引:0,他引:5  
本文利用包含海洋表面边界层和大气辐合反馈过程的热带太平洋海气耦合异常模式的30年模拟结果,通过对模式ENSO循环演变特征和正负反馈机制的细致分析揭示出了ENSO循环形成的一种新的负反馈过程。指出:ENSO循环的正反馈机制是不稳定海气相互作用过程,且这一不稳定过程的发展在暖态中明显强于冷态;ENSO循环的负反馈机制在冷暖态中表现不同,在冷态消亡过程中,这种负反馈过程主要表现为暖的西传Rossby波经西边界反射产生的暖的东传Kelvin波来抑制冷位相不稳定发展的,但在暖态消亡过程中,不存在类似的纬向波作用过程,其负反馈过程主要表现为在海气耦合不稳定充分发展时伴随的赤道两侧冷水上翻过程的加强以及非线性过程的衰减作用共同抑制了不稳定的发展,并最终使系统从暖态恢复至冷态。本文得出的ENSO循环暖位相中的负反馈机制和近年来国外提出的“时滞振子”理论明显不同。  相似文献   

13.
Remarkable progress has been made in observations, theories, and simulations of the ocean-atmosphere system, laying a solid foundation for the improvement of short-term climate prediction, among which Chinese scientists have made important contributions. This paper reviews Chinese research on tropical air-sea interaction, ENSO dynamics, and ENSO prediction in the past 70 years. Review of the tropical air-sea interaction mainly focuses on four aspects: characteristics of the tropical Pacific climate system and ENSO; main modes of tropical Indian Ocean SSTs and their interactions with the tropical Pacific; main modes of tropical Atlantic SSTs and inter-basin interactions; and influences of the mid-high-latitude air-sea system on ENSO. Review of the ENSO dynamics involves seven aspects: fundamental theories of ENSO; diagnosis and simulation of ENSO; the two types of ENSO; mechanisms of ENSO initiation; the interactions between ENSO and other phenomena; external forcings and teleconnections; and climate change and the ENSO response. The ENSO prediction part briefly summarizes the dynamical-statistical methods used in ENSO prediction, as well as the operational ENSO prediction systems and their applications. Lastly, we discuss some of the issues in these areas that are in need of further study.  相似文献   

14.
国际上针对海洋-大气系统的观测、理论和模拟方面已经开展了广泛而深入的研究,为短期气候预测水平的不断提升奠定了坚实基础,这其中中国学者做出了许多重要贡献。文中简要回顾了中国学者70年来在热带海-气相互作用与ENSO动力学及预测方面的研究进展。其中,热带海-气相互作用部分主要涉及4个方面的内容:热带太平洋气候特征与ENSO现象、热带印度洋海温主要模态及其与太平洋相互作用、热带大西洋海温主要模态及与海盆的相互作用、中高纬度海-气系统对ENSO的影响;ENSO动力学包括7个方面的内容:基本理论的相关研究、ENSO相关的诊断与模拟研究、两类ENSO相关研究、ENSO触发机制相关研究、ENSO与其他现象的相互作用、外部强迫与大气遥相关、气候变化与ENSO响应;ENSO预测主要包括2个方面的内容:动力-统计ENSO预测方法、ENSO预测系统与应用。最后,还讨论了上述相关方面亟待解决的问题。   相似文献   

15.
ENSO循环及相关研究综述   总被引:1,自引:0,他引:1  
ENSO(El Nino & South Oscillation)是热带海气相互作用的强信号,对全球气候异常有着重要影响。本文着重论述近几十年来ENSO循环与相关海一气系统相互作用的研究现状。首先从线性、非线性两方面阐述了ENSO循环的正负反馈机制;其次,详细论述了西太平洋暖池、热带大气环流和中高纬海一气系统与ENSO循环相互作用的物理过程和机制;最后,从统计预测和数值预测两方面对ENSO的预测现状进行了评述。  相似文献   

16.
近几年中国大气动力学的主要进展   总被引:5,自引:5,他引:5  
10年来,尤其是最近几年来,中国科学家在动力气象学以及新兴发展起来的气候动力学的研究方面取得了明显的进展,许多成果得到国内外专家的重视和好评。本文就主要的几个方面作一概括性的介绍,以促进中国动力气象学和气候动力学研究的进一步发展。  相似文献   

17.
Progress of large-scale air-sea interaction studies in China   总被引:2,自引:2,他引:0  
This paper summarizes the progress of large-scale air-sea interaction studies that has been achieved in China in the four-year period from July 1998 to July 2002, including seven aspects in the area of the air-sea interaction, namely air-sea interaction related to the tropical Pacific Ocean, monsoon-related air-sea interaction, air-sea interaction in the north Pacific Ocean, air-sea interaction in the Indian Ocean, air-sea interactions in the global oceans, field experiments, and oceanic cruise surveys. However more attention has been paid to the first and the second aspects because a large number of papers in the reference literature for preparing and organizing this paper are concentrated in the tropical Pacific Ocean, such as the ENSO process with its climatic effects and dynamics, and the monsoon-related air-sea interaction. The literature also involves various phenomena with their different time and spatial scales such as intraseasonal,annual, interannual, and interdecadal variabilities in the atmosphere/ocean interaction system, reflecting the contemporary themes in the four-year period at the beginning of an era from the post-TOGA to CLIVAR studies. Apparently, it is a difficult task to summarize the great progress in this area, as it is extracted from a large quantity of literature, although the authors tried very hard.  相似文献   

18.
THE AIR-SEA INTERACTION WAVES IN THE TROPICS AND THEIR INSTABILITIES   总被引:14,自引:0,他引:14       下载免费PDF全文
By using a simple air-sea coupled model,the interaction of Rossby waves between the air and sea inthe tropics is discussed.It is shown that the coupling of Rossby waves in the two media produces notonly the westward propagating waves,but also a type of new wave which moves eastward.The eastwardpropagating waves exist in the scope of comparatively long wavelengths and this scope is governed bythe intensity of the air-sea interaction.In addition,instability may appear in both the eastward and west-ward propagating waves,and the wave amplifying rates are also governed by the intensity of the air-seainteraction.In the end,a possible explanation to ENSO events is given in terms of the air-sea interactionwaves.  相似文献   

19.
热带海气相互作用波及其不稳定性   总被引:8,自引:1,他引:8  
本文利用一个简单的海气耦合模式,讨论了热带海洋和大气中Rossby波的相互作用。结果指出,海洋和大气中向西传播的Rossby波耦合后,不仅存在着向西传播的波动,而且还可以产生一类向东传的新波。这种向东传播的波动出现在波长较长的波段范围内,这个范围的大小受海气相互作用强度的制约。另外,波动可以出现不稳定性,向西和向东传的波均有不稳定现象发生,不稳定增长率也受海气相互作用强度的制约。最后,根据所得到的海气相互作用波,对ENSO现象作了一个可能的解释。  相似文献   

20.
This study discusses the representation of the intraseasonal oscillation (ISO) in three simulations with the ECHAM4 atmosphere general circulation model (GCM). First, the model is forced by AMIP sea surface temperatures (SST), then coupled to the OPYC3 global ocean GCM and third forced by OPYC3 SSTs to clarify possible air-sea interactions and connections of the ISO and the ENSO cycle. The simulations are compared to ECMWF reanalysis data and NOAA outgoing longwave radiation (OLR) observations. Although previous studies have shown that the ECHAM4 GCM simulates an ISO-like oscillation, the main deficits are an overly fast eastward propagation and an eastward displacement of the main ISO activity, which is shown with a composite analysis of daily data between 1984 to 1988 for the reanalysis and the AMIP simulation, 25 years of the coupled integration, and a five year subset of the coupled SST output used for the OPYC3 forced atmosphere GCM experiment. These deficits are common to many atmospheric GCMs. The composites are obtained by principal oscillation pattern (POP). The POPs are also used to investigate the propagation speed and the interannual variability of the main ISO activity. The present coupled model version reveals no clear improvements in the ISO simulation compared to the uncoupled version forced with OPYC3 SSTs, although it is shown that the modeled ISO influences the simulated high-frequency SST variability in the coupled GCM. Within the current analysis, ECHAM4 forced by AMIP SSTs provides the most reasonable ISO simulation. However, it is shown that the maximum amplitudes of the annual cycle of the ISO variability in all analyzed model versions are reached too late in the year (spring and summer) compared to the observations (winter and spring). Additionally, the ENSO cycle influences the interannual variability of the ISO, which is revealed by 20 years of daily reanalysis data and 100 years of the coupled integration. The ENSO cycle is simulated by the coupled model, although there is a roughly 1 K cold bias in the East Pacific in the coupled model. This leads to a diminished influence of the ENSO cycle on the spatial variability of the modeled ISO activity compared to observations. This points out the strong sensitivity of the SST on the ISO activity. Small biases in the SST appear to cause large deterioration in the modeled ISO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号