首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present here experimental determinations of mass accommodation coefficients using a low pressure tube reactor in which monodispersed droplets, generated by a vibrating orifice, are brought into contact with known amounts of trace gases. The uptake of the gases and the accommodation coefficient are determined by chemical analysis of the aqueous phase.We report in this article measurements of exp=(6.0±0.8)×10–2 at 298 K and with a total pressure of 38 Torr for SO2, (5.0±1.0)×10–2 at 297 K and total pressure of 52 Torr for HNO3, (1.5±0.6)×10–3 at 298 K and total pressure of 50 Torr for NO2, (2.4±1.0)×10–2 at 290 K and total pressure of 70 Torr for NH3.These values are corrected for mass transport limitations in the gas phase leading to =(1.3±0.1)×10–1 (298 K) for SO2, (1.1±0.1)×10–1 (298 K) for HNO3, (9.7±0.9)×10–2 (290 K) for NH3, (1.5±0.8)×10–3 (298 K) for NO2 but this last value should not be considered as the true value of for NO2 because of possible chemical interferences.Results are discussed in terms of experimental conditions which determine the presence of limitations on the mass transport rates of gaseous species into an aqueous phase, which permits the correction of the experimental values.  相似文献   

2.
Using the chemical composition of snow and ice of a central Greenland ice core, we have investigated changes in atmospheric HNO3 chemistry following the large volcanic eruptions of Laki (1783), Tambora (1815) and Katmai (1912). The concentration of several cations and anions, including SO 4 2– and NO 3 , were measured using ion chromatography. We found that following those eruptions, the ratio of the concentration of NO 3 deposited during winter to that deposited during summer was significantly higher than during nonvolcanic periods. Although we cannot rule out that this pattern originates from snow pack effects, we propose that increased concentrations of volcanic H2SO4 particles in the stratosphere may have favored condensation and removal of HNO3 from the stratosphere during Arctic winter. In addition, this pattern might have been enhanced by slower formation of HNO3 during summer, caused by direct consumption of OH through oxidation of volcanic SO2.  相似文献   

3.
An in-cloud scavenging case study of the major ions (NH4 +, SO4 2- and NO3 -) determining the cloudwater composition at a mountain site (1620 m.a.s.l.) is presented. A comparison between in-cloud measurements of the cloudwater composition, liquid water content, gas concentrations and aerosol concentrations and pre-cloud gas and aerosol concentrations yields the following results. Cloudwater concentrations resulted from scavenging of about half of the available NH3, aerosol NH4 +, aerosol NO3 -, and aerosol SO4 2-. Approximately a third of the SO2 was scavenged by the cloudwater and oxidized to SO4 2-. Cloud acidity during the first two hours of cloud interception (pH 3.24) was determined mostly by the scavenged gases (NH3, SO2, and HNO3); aerosol contributions to the acidity were found to be small. Observations of gas and aerosol concentrations at three elevations prior to several winter precipitation events indicated that NH3 concentrations are typically half (12–80 %) of the total (gas and aerosol) N (-III) concentrations. HNO3 typically is present at much lower concentrations (1–55 %) than aerosol NO3 -. Concentrations of SO2 are a substantial component of total sulfur, with concentrations averaging 60 % (14–76 %) of the total S (IV and VI).  相似文献   

4.
The photochemical oxidation of SO2 in the presence of NO and C3H6 was studied in a 18.2 liter pyrex reactor. When light intensity, irradiation time and SO2 concentration were constant, SO4 2- concentration, derived from the total volume of aerosol produced, peaked when [C3H6]/[NO] was approximately 6.0. Another increase im SO4 2- formation was reached at very high ratios (>50). The experimental observations are consistent with the two SO2 oxidation mechanisms. At low [C3H6]/[NO] ratios, the processes proceed via the HO–SO2 reaction, while at high ratios the O3–C3H6 adduct is assumed to oxidize SO2 to produce SO4 2- aerosols.  相似文献   

5.
Four case studies are described, from a three-site field experiment in October/November 1991 using the Great Dun Fell flow-through reactor hill cap cloud in rural Northern England. Measurements of total odd-nitrogen nitrogen oxides (NO y ) made on either side of the hill, before and after the air flowed through the cloud, showed that 10 to 50% of the NO y , called NO z , was neither NO nor NO2. This NO z failed to exhibit a diurnal variation and was often higher after passage through cloud than before. No evidence of conversion of NO z to NO3 - in cloud was found. A simple box model of gas-phase chemistry in air before it reached the cloud, including scavenging of NO3 and N2O5 by aerosol of surface area proportional to the NO2 mixing ratio, shows that NO3 and N2O5 may build up in the boundary layer by night only if stable stratification insulates the air from emissions of NO. This may explain the lack of evidence for N2O5 forming NO3 - in cloud under well-mixed conditions in 1991, in contrast with observations under stably stratified conditions during previous experiments when evidence of N2O5 was found. Inside the cloud, some variations in the calculated total atmospheric loading of HNO2 and the cloud liquid water content were related to each other. Also, indications of conversion of NO x to NO z were found. To explain these observations, scavenging of NO x and HNO2 by cloud droplets and/or aqueous-phase oxidation of NO2 - by nitrate radicals are considered. When cloud acidity was being produced by aqueous-phase oxidation of NO x or SO2, NO3 - which had entered the cloud as aerosol particles was liberated as HNO3 vapour. When no aqueous-phase production of acidity was occurring, the reverse, conversion of scavenged HNO3 to particulate NO3 -, was observed.  相似文献   

6.
A method for the estimation of the reaction probability of the heterogeneous N2O5+H2O 2HNO3 reaction using the deposition profile in a laminar flow tube, in which the walls are coated with the condensed aqueous phase of interest, is presented. The production of gas phase nitric acid on the surface followed by its absorption complicates the deposition profiles and hence the calculation of the reaction probability. An estimation of the branching ratio for this process enables a more appropriate calculation to be carried out. Reaction probabilities of N2O5 on substances including some normally constituting atmospheric aerosols, NaCl, NH4HSO4, as well as Na2CO3 are estimated and found to depend on relative humidity and characteristics of the coating used. These fell within the range (0.04–2.0)×10–2.  相似文献   

7.
The kinetics of the reaction of nitrous acid (HONO) with nitric acid (HNO3), nitrate radicals (NO3) and dinitrogen pentoxide (N2O5) have been studied using Fourier transform infrared spectroscopy. Experiments were performed at 700 torr total pressure using synthetic air or argon as diluents. From the observed decay of HONO in the presence of HNO3 a rate constant of k<7×10-19 cm3 molecule-1 s-1 was derived for the reaction of HONO with HNO3. From the observed decay of HONO in the presence of mixtures of N2O5 and NO2 we have also derived upper limits for the rate constants of the reactions of HONO with NO3 and N2O5 of 2×10-15 and 7×10-19 cm3 molecule-1 s-1, respectively. These results are discussed with respect to previous studies and to the atmospheric chemistry of HONO.  相似文献   

8.
In a nighttime system and under relatively dry conditions (about 15 ppm H2O), the reaction mixture of NO2, O3, and NH3 in purified air turns out to result in the formation of nitrous oxide (N2O). The experiments were performed in a continuous stirred flow reactor, in the concentration region of 0.02–2 ppm.N2O is thought to arise through the heterogeneous reaction of gaseous N2O5 and absorbed NH3 at the wall of the reaction vessel % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9sq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9pue9Fve9% Ffc8meGabaqaciGacaGaaeqabaWaaeaaeaaakeaatCvAUfKttLeary% qr1ngBPrgaiuaacqWFOaakcqWFobGtcqWFibasdaWgaaWcbaGae83m% amdabeaakiab-LcaPmaaBaaaleaacqWFHbqyaeqaaOGaey4kaSIaai% ikaiab-5eaonaaBaaaleaacqWFYaGmaeqaaOGae83ta80aaSbaaSqa% aiab-vda1aqabaGccaGGPaWaaSbaaSqaaiaadEgaaeqaaOGaeyOKH4% Qae8Nta40aaSbaaSqaaiab-jdaYaqabaGccqWFpbWtcqGHRaWkcqWF% ibascqWFobGtcqWFpbWtdaWgaaWcbaGae83mamdabeaakiabgUcaRi% ab-HeainaaBaaaleaacqWFYaGmaeqaaOGae83ta8eaaa!59AC!\[(NH_3 )_a + (N_2 O_5 )_g \to N_2 O + HNO_3 + H_2 O\]In principle, there is competition between this reaction and that of adsorbed H2O with N2O5, resulting in the formation of HNO3. At high water concentrations (RH>75%), no formation of N2O was found. Although the rate constant of adsorbed NH3 with gaseous N2O5 is much larger than that of the reaction of adsorbed H2O with gaseous N2O5, the significance of the observed N2O formation for the outside atmosphere is thought to be dependent on the adsorption properties of H2O and NH3 on a surface. A number of NH3 and H2O adsorption measurements on several materials are discussed.  相似文献   

9.
A photochemical box model is used to simulate seasonal variations in concentrations of sulfur compounds at latitude 40° S. It is assumed that the hydroxyl radical (OH) addition reaction to sulfur in the dimethyl sulfide (DMS) molecule is the predominant pathway for methanesulfonic acid (MSA) production, and that the rate constant increases as the air temperature decreases. Concentration of the nitrate radical (NO3) is a function of the DMS flux, because the reaction of DMS with NO3 is the most important loss mechanism of NO3. While the diurnally averaged concentration of OH in winter is a factor of about 8 smaller than in summer, due to the weak photolysis process, the diurnally averaged concentration of NO3 in winter is a factor of about 4–5 larger than in summer, due to the decrease of DMS flux. Therefore, at middle and high latitudes in winter, atmospheric DMS is mainly oxidized by the reaction with NO3. The calculated ratio of the MSA to SO2 production rates is smaller in winter than in summer, and the MSA to non-sea-salt sulfate (nssSO4 2-) molar ratio varies seasonally. This result agrees with data on the seasonal variation of the MSA/nssSO4 2- molar ratio obtained at middle and high latitudes. The calculations indicate that during winter the reaction of DMS with NO3 is likely to be a more important sink of NOx (NO+NO2) than the reaction of NO2 with OH, and to serve as a significant pathway of the HNO3 production. If dimethyl sulfoxide (DMSO) is produced through the OH addition reaction and is heterogeneously oxidized in aqueous solutions, half of the nssSO4 2- produced in summer may be through the oxidation process of DMSO. It is necessary to further investigate the oxidation products by the reaction of DMS with OH, and the possibility of the reaction of DMS with NO3 during winter.  相似文献   

10.
Generally, it is assumed that UV-light, high temperature or reactive molecules like O3 and OH are needed to activate gas reactions in air. In consequence, the catalytic activity on natural materials such as sand and soil on the earth's surface is assumed to be insignificant. We have measured O2-dissociation rates on natural quartz sand at 40˚C and compared these with O2-dissociation rates near 500˚C on materials with well-known catalytic activity. In terms of probabilities for dissociation of impinging O2-molecules the measured rates are in the 10−12–10−4 range. We have also measured dissociation rates of H2 and N2, water-formation from H2 and O2 mixtures, exchange of N between N2, NO x and a breakdown of HNO3, NO2 and CH4 on natural quartz sand at 40˚C. The measured rates together with an effective global land area have been used to estimate the impact of thermodynamically driven reactions on the earth's surface on the global atmospheric budgets of H2, NO2 and CH4. The experimental data on natural quartz sand together with data from equilibrium calculations of air suggest that an expected increase in anthropogenic supply of air pollutants, such as NO x or other “reactive” nitrogen compounds, hydrogen and methane, will be counter-acted by catalysis on the earth's surface. On the other hand, at Polar Regions and boreal forests where the “reactive” nitrogen concentration is below equilibrium, the same catalytic effect activates formation of bio-available nitrogen compounds from N2, O2 and H2O.  相似文献   

11.
The growth of monodisperse particles (0.07 to 0.5 µm) exposed to SO2 (0–860 ppb), H2O2 (0–150 ppb) and sometimes NH3 (0–550 ppb) in purified air at 22 °C at relative humidities ranging from 25 to 75% were measured using the Tandem Differential Mobility Analyzer technique. The experiments were performed in a flow reactor with aqueous (NH4)2SO4 and Na2SO4 droplets. For (NH4)2SO4 droplets the fractional diameter growth was independent of size above 0.3 µm but decreased with decreasing size below that. When NH3 was added the fractional growth increased with decreasing size. Measurements were compared with predictions of a model that accounts for solubility of the reactive gases, the liquid phase oxidation of SO2 by H2O2, and ionic equilibria. Agreement between measured and predicted droplet growth is reasonable when the ionic strength effects are included. Theory and experiments suggest that NH3 evaporation is responsible for the decrease in relative growth rates for small aqueous ammonium sulfate particles. The observed droplet growth rates are too slow to explain observed growth rates of secondary atmospheric sulfate particles.  相似文献   

12.
对临安大气本底站2003-2004年冬、夏季二氧化氮(NO2)、二氧化硫(SO2)、臭氧(O3)进行了分析.结果表明:冬季NO2和SO2平均体积分数分别为19.48×10-9和35.74 x10-9,而夏季的平均体积分数分别为4.81×10-9和8.12×10-9,冬季高于夏季;O3在夏季的平均体积分数为33.55×10-9,略高于冬季的25.44×10-9;夜间NO2和SO2体积分数比白天高,并且NO2呈明显的单峰单谷型分布,O3也呈单峰型但峰值出现在白天.NO2、SO2体积分数存在着明显的“假日效应”,假日比非假日低,周五高于假日和非假日;但O3体积分数没有明显的假日效应.降水对SO2有明显的清除作用,但对NO2的清除作用不明显.与风向对比发现,夏季高体积分数的NO2、SO2都受到NW、WNW风的影响,冬季则分别受NE和SW、SSW风的影响;而O3受风向的影响较复杂,与局地光化学反应有关.  相似文献   

13.
14.
Products of the gas-phase reaction of the NO3 radical with thiophene have been investigated using different experimental systems. On the one hand, experiments have been conducted in our laboratory using two different methods, a Teflon static reactor coupled to a gas chromatograph combined with mass-spectrometry (GC-MS) and a discharge flow tube with direct MS spectroscopic detection. A qualitative analysis in these cases indicates that possible products for the reaction of thiophene+NO3 at room temperature include: sulphur dioxide, acetic and formic acids, a short-chain aldehyde, 2-nitrothiophene and 3-nitrothiophene. On the other hand, quantitative experiments have been performed in the European Photoreactor (EUPHORE) in Valencia, Spain. In this case, the major products were: HNO3 (≈80%), nitrothiophenes (≈30%), SO2 (≈20%), propanal (3%) and a fraction of particles (≈10%). The results obtained indicate that at least 70% of the reaction of NO3 with thiophene proceeds by an H-abstraction process at room temperature. The mechanism of the reaction studied is proposed on the basis of experimental results.  相似文献   

15.
The kinetics of the aqueous phase reactions of NO3 radicals with HCOOH/HCOO and CH3COOH/CH3COO have been investigated using a laser photolysis/long-path laser absorption technique. NO3 was produced via excimer laser photolysis of peroxodisulfate anions (S2O 8 2– ) at 351 nm followed by the reactions of sulfate radicals (SO 4 ) with excess nitrate. The time-resolved detection of NO3 was achieved by long-path laser absorption at 632.8 nm. For the reactions of NO3 with formic acid (1) and formate (2) rate coefficients ofk 1=(3.3±1.0)×105 l mol–1 s–1 andk 2=(5.0±0.4)×107 l mol–1 s–1 were found atT=298 K andI=0.19 mol/l. The following Arrhenius expressions were derived:k 1(T)=(3.4±0.3)×1010 exp[–(3400±600)/T] l mol–1 s–1 andk 2(T)=(8.2±0.8)×1010 exp[–(2200±700)/T] l mol–1 s–1. The rate coefficients for the reactions of NO3 with acetic acid (3) and acetate (4) atT=298 K andI=0.19 mol/l were determined as:k 3=(1.3±0.3)×104 l mol–1 s–1 andk 4=(2.3±0.4)×106 l mol–1 s–1. The temperature dependences for these reactions are described by:k 3(T)=(4.9±0.5)×109 exp[–(3800±700)/T] l mol–1 s–1 andk 4(T)=(1.0±0.2)×1012 exp[–(3800±1200)/T] l mol–1 s–1. The differences in reactivity of the anions HCOO and CH3COO compared to their corresponding acids HCOOH and CH3COOH are explained by the higher reactivity of NO3 in charge transfer processes compared to H atom abstraction. From a comparison of NO3 reactions with various droplets constituents it is concluded that the reaction of NO3 with HCOO may present a dominant loss reaction of NO3 in atmospheric droplets.  相似文献   

16.
The kinetics of the reaction of NO2 with O3 have been investigated at 296 K, using UV absorption spectroscopy to monitor decay of NO2 or O3 and infrared laser absorption spectroscopy to monitor formation of the reaction product N2O5. The results both for the rate coefficient at 296 K (k 1=3.5×10-17 cm3 molecule-1 s-1) and the reaction stoichiometry (NO2/O3=1.85±0.09) are in good agreement with previous studies, confirming that the two step mechanism involving formation of symmetrical NO3 as an intermediate is predominant.% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOtaiaab+% eadaWgaaWcbaGaaeOmaaqabaGccqGHRaWkcaqGpbWaaSbaaSqaaiaa% bodaaeqaaOWaa4ajaSqaaaqabOGaayPKHaGaaeOtaiaab+eadaWgaa% WcbaGaae4maaqabaGccqGHRaWkcaqGpbWaaSbaaSqaaiaabkdaaeqa% aaaa!41D7!\[{\text{NO}}_{\text{2}} + {\text{O}}_{\text{3}} \xrightarrow{{}}{\text{NO}}_{\text{3}} + {\text{O}}_{\text{2}} \]% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOtaiaab+% eadaWgaaWcbaGaae4maaqabaGccqGHRaWkcaqGobGaae4tamaaBaaa% leaacaqGYaaabeaakiabgUcaRiaab2eadaGdKaWcbaaabeGccaGLsg% cacaqGobWaaSbaaSqaaiaabkdaaeqaaOGaae4tamaaBaaaleaacaqG% 1aaabeaakiabgUcaRiaab2eaaaa!4464!\[{\text{NO}}_{\text{3}} + {\text{NO}}_{\text{2}} + {\text{M}}\xrightarrow{{}}{\text{N}}_{\text{2}} {\text{O}}_{\text{5}} + {\text{M}}\]A possible minor role for the unsymmetrical ONOO species is suggested to account for the lower-than-expected stoichiometry factor. The importance of this reaction in the oxidation of atmospheric NO2 is discussed.  相似文献   

17.
A global three-dimensional model of the tropospheric sulfur cycle   总被引:9,自引:0,他引:9  
The tropospheric part of the atmospheric sulfur cycle has been simulated in a global three-dimensional model. The model treats the emission, transport, chemistry, and removal processes for three sulfur components; DMS (dimethyl sulfide), SO2 and SO4 2– (sulfate). These processes are resolved using an Eulerian transport model, the MOGUNTIA model, with a horizontal resolution of 10° longitude by 10° latitude and with 10 layers in the vertical between the surface and 100 hPa. Advection takes place by climatological monthly mean winds. Transport processes occurring on smaller space and time scales are parameterized as eddy diffusion except for transport in deep convective clouds which is treated separately. The simulations are broadly consistent with observations of concentrations in air and precipitation in and over polluted regions in Europe and North America. Oxidation of DMS by OH radicals together with a global emission of 16 Tg DMS-S yr–1 from the oceans result in DMS concentrations consistent with observations in the marine boundary layer. The average turn-over times were estimated to be 3, 1.2–1.8, and 3.2–6.1 days for DMS, SO2, and SO4 2– respectively.  相似文献   

18.
Previous experiments in the 400–500 nm region (Coquart et al., 1995) have been extended to the 200–400 nm region to determine the absorption cross-sections of NO2 at 220 K. The NO2 and N2O4 cross-sections are obtained simultaneously from a calculation applied to the data resulting from measurements at low pressures. A comparison between the NO2 cross-sections at 220 K and at ambient temperature shows that the low temperature cross-sections are generally lower, except in the region of the absorption peaks. Comparisons are also made with previous data at temperature close to 220 K.  相似文献   

19.
Photochemical indicators for determination of O3–NOx–ROG sensitivity and their sensitivity to model parameters are studied for a variety of polluted conditions using a comprehensive mixed-phase chemistry box model and the novel automatic differentiation ADIFOR tool. The main chemical reaction pathways in all phases, interfacial mass transfer processes, and ambient physical parameters that affect the indicators are identified and analyzed. Condensed mixed-phase chemical mechanisms are derived from the sensitivity analysis.Our results show that cloud chemistry has a significant impact on the indicators and their sensitivities, particularly on those involving H2O2, HNO3, HCHO, and NOz. Caution should be taken when applying the established threshold values of indicators in regions with large cloud coverage. Among the commonly used indicators, NOy and O3/NOy are relatively insensitive to most model parameters, whereas indicators involving H2O2, HNO3, HCHO, and NOz are highly sensitive to changes in initial species concentrations, reaction rate constants, equilibrium constants, temperature, relative humidity, cloud droplet size, and cloud water content.  相似文献   

20.
We investigated the partitioning of trace substances during the phase transition from supercooled to mixed-phase cloud induced by artificial seeding. Simultaneous determination of the concentrations of H2O2, NH3 and black carbon (BC) in both condensed and interstitial phases with high time resolution showed that the three species undergo different behaviour in the presence of a mixture of ice crystals and supercooled droplets. Both H2O2 and NH3 are efficiently scavenged by growing ice crystals, whereas BC stayed predominantly in the interstitial phase. In addition, the scavenging of H2O2 is driven by co-condensation with water vapour onto ice crystals while NH3 uptake into the ice phase is more efficient than co-condensation alone. The high solubility of NH4+ in the ice could explain this result. Finally, it appears that the H2O2–SO2 reaction is very slow in the ice phase with respect to the liquid phase. Our results are directly applicable for clouds undergoing limited riming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号