首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Hurricanes cause a variety of damage due to high winds, heavy rains, and storm surges. This study focuses on hurricanes’ high winds. The most devastating effects of sustained high winds occur in the first few hours of landfall. During the short period, hurricanes’ rainfall often increases, while the low-level pressure gradients continue to weaken. Latent heating does not appear to strengthen the surface winds. The indicator is that dry mechanisms such as the boundary layer processes and terrain are responsible for the damaging winds in the coastal areas. In this study, the design of a dry hurricane boundary layer wind model is described. The goal is to develop a forecast tool with near-real time applications in expeditious wind damage assessment and disaster mitigation during a hurricane landfall event. Different surface roughness lengths and topographic features ranging from flat land to the mountainous terrain of Taiwan were used in the model simulation experiments to reveal how the coastal environment affected the hurricane surface winds. The model performed quite well in all cases. The experiments suggested that the downward transfer of high momentum aloft played a significant role in the maintenance of high wind speeds at the surface. The surface wind maximums were observed on the lee sides of high terrain. The surface streamline analyses showed that the high mountains tended to block the relatively weak flow and caused small eddies, while they forced the stronger flow to turn around the mountains. Due to great difficulty in data collection, the hurricane boundary layer over land remains one of the least understood parts of the system. The dry model proves to be an effective way to study many aspects of hurricane boundary layer winds over a wide range of terrain features and landfall sites. The model runs efficiently and can be run on a medium-size personal computer. Received March 16, 2001 Revised September 10, 2001  相似文献   

2.
We examine the climatological diurnal cycle of surface air temperature in a 6 km resolution atmospheric simulation of Southern California from 1995 to the present. We find its amplitude and phase both have significant geographical structure. This is most likely due to diurnally-varying flows back and forth across the coastline and elevation isolines resulting from the large daily warming and cooling over land. Because the region’s atmosphere is generally stably stratified, these flow patterns result in air of lower (higher) potential temperature being advected upslope (downslope) during daytime (nighttime). This suppresses the temperature diurnal cycle amplitude at mountaintops where diurnal flows converge (diverge) during the day (night). The nighttime land breeze also advects air of higher potential temperature downslope toward the coast. This raises minimum temperatures in land areas adjacent to the coast in a manner analogous to the daytime suppression of maximum temperature by the cool sea breeze in these same areas. Because stratification is greater in the coastal zone than in the desert interior, these thermal effects of the diurnal winds are not uniform, generating spatial structures in the phase and shape of the temperature diurnal cycle as well as its amplitude. We confirm that the simulated characteristics of the temperature diurnal cycle as well as those of the associated diurnal winds are also found in a network of 30 observation stations in the region. This gives confidence in the simulation’s realism and our study’s findings. Diurnal flows are probably mainly responsible for the geographical structures in the temperature diurnal cycle in other regions of significant topography and surface heterogeneity, their importance depending partly on the degree of atmospheric stratification.  相似文献   

3.
Pibal ascents were taken every three hours at a coastal station, Sriharikota (India) on the east coast in four different campaigns each representing a season in India. A diurnal pattern of winds in the PBL winds was found in all seasons but the pattern varies from season to season. The details are described and discussed.  相似文献   

4.
Summary Upper level and surface wind data for 1994 are used to provide an initial identification of the orographic effect on regional airflow patterns upwind of the mountain barrier. A case study of the development of upstream blocking and barrier jets is also provided. The predominance of gradient airflow from between northwest and southwest through this region results in frequent trans-mountain winds. The mountains are seen to have a major effect on airflow in the lowest 2000 m above sea level, with clear evidence of orographic blocking and barrier wind development. Some variability in the extent of this blocking was noted during 1994, which appeared to be associated with changes in the synoptic circulation and air mass characteristics. The frequent occurrence of southwesterly winds between 300 m and 2000 m indicates significant deflection of the predominant winds to follow the southwest-northeast orientation of the mountains. These southwesterly barrier winds occur in opposition to the apparent pressure gradient. Northeasterly barrier winds occur mainly below 300 m, and represent a down-gradient, localised flow that is frequently separated from overlying northwesterly gradient winds by a transitional layer, within which the wind backs with height. The controls of the extent of orographic blocking are only assessed superficially, due to the lack of good thermodynamic data upstream of the mountains, although a combination of wind speed and atmospheric stability is obviously important. These initial results provide a useful insight into the extent of orographic effects on regional windfields, which will serve as the basis for future observational and modelling studies. Received June 11, 1998 Revised April 16, 1999  相似文献   

5.
This paper investigates the impact of soil moisture-temperature feedback during heatwaves occurring over France between 1989 and 2008. Two simulations of the weather research and forecasting regional model have been analysed, with two different land-surface models. One resolves the hydrology and is able to simulate summer dryness, while the other prescribes constant and high soil moisture and hence no soil moisture deficit. The sensitivity analysis conducted for all heatwave episodes highlights different soil moisture-temperature responses (1) over low-elevation plains, (2) over mountains and (3) over coastal regions. In the plains, soil moisture deficit induces less evapotranspiration and higher sensible heat flux. This has the effect of heating the planetary boundary layer and at the same time of creating a general condition of higher convective instability and a slight increase of shallow cloud cover. A positive feedback is created which increases the temperature anomaly during the heatwaves. In mountainous regions, enhanced heat fluxes over dry soil reinforce upslope winds producing strong vertical motion over the mountain slope, first triggered by thermal convection. This, jointly to the instability conditions, favors convection triggering and produces clouds and precipitation over the mountains, reducing the temperature anomaly. In coastal regions, dry soil enhances land/sea thermal contrast, strengthening sea-breeze circulation and moist cold marine air advection. This damps the magnitude of the heatwave temperature anomaly in coastal areas, expecially near the Mediterranean coast. Hence, along with heating in the plains, soil dryness can also have a significant cooling effect over mountains and coastal regions due to meso-scale circulations.  相似文献   

6.
Harmonic analysis of longshore and onshore components of surface winds over an upwelling area off the coast of Peru shows regular, nearly sinusoidal, diurnal variations in both velocity components. Spectral analysis of wind speed also indicates strong diurnal variations in kinetic energy. The data are compatible with a recent model of coastal winds proposed by Lettau and Lettau.  相似文献   

7.
Summary Two cumulus convection and two planetary boundary layer schemes are used to investigate the climate of southern Africa using the MM5 regional climate model. Both a wet (1988/89) and a dry (1991/92) summer (December–February, DJF) rainfall season are simulated and the results compared with three different observational sources: Climate Research Unit seasonal data (precipitation, 2 m surface temperature, number of rain days), satellite-derived diurnal precipitation and the Surface Radiation Budget diurnal short-wave fluxes and optical depth. Using the ETA model boundary layer in MM5 simulates too much incident short-wave radiation at the surface at 12 UTC, whereas the medium range forecast model boundary layer yields a diurnal cycle of short-wave radiation closer to the observed. The Betts-Miller convection scheme in MM5 simulates peak rainfall later in the day and less rain days than observed, whereas when using the Kain-Fritsch convection scheme a peak rainfall earlier in the day and more rain days than observed are simulated. The intensity of the hydrological cycle is therefore dependent on the choice of convection scheme, which in turn is further modified by the boundary layer scheme. Precipitation during the wet 1988/89 season is reasonably captured by most simulations, though using the Betts-Miller scheme more accurately simulates rainfall during the dry 1991/92 season. Mean DJF biases in the surface temperature and diurnal temperature range are consistent with biases in the number of rain days and the diurnal cycles of surface moisture and energy.  相似文献   

8.
Summary In one of the first micrometeorological experiments at a tropical site in West Africa, direct measurements of all surface energy balance components were carried out. The experiment NIMEX-1 in Ile-Ife, Nigeria (7°33′ N, 4°33′ E), was conducted from February 19, 2004 to March 9, 2004, during the transition from the dry to the wet season. Three typical weather situations could be observed: firstly, monsoonal winds from the southwest blew over desiccated soils. Almost 100% of the available energy at the surface was transformed into sensible heat flux. Secondly, after several thundershowers, monsoonal winds swept over soils of increased water content, which led to a partitioning of the available energy corresponding to Bowen ratios between 0.3 and 0.5. Thirdly, harmattan winds advected dry dusty air from northern directions, which reduced the incoming shortwave radiation. Again, Bowen ratios range from 0.3 to 0.5 during daytime, whereas latent heat fluxes are still high during the night due to the advection of very dry air. No systematic non-closure of the surface energy balance could be found for the NIMEX-1 dataset. Unlike other experiments in Europe, most of the ogives for the sensible and latent heat flux were found to be convergent during NIMEX-1 in Ile-Ife. This can be attributed to the homogeneity of the surrounding bush, which lacks the defined borders found in agriculturally cultivated landscapes.  相似文献   

9.
《大气与海洋》2013,51(2):199-220
Abstract

Lightning activity over the Mackenzie basin has been examined for the summers of 1994 and 1995. In recent years, the lightning network operating in the Northwest Territories has detected an average of 118 K strikes per season. Positive lightning strikes (defined as lightning discharges lowering positive charge to the earth) typically comprise 12% of the total. The lightning activity during 1994 was approximately 20% below normal, while in 1995, it was 53% below normal. However, the fraction of positive lightning strikes was 25.6% during 1995. The lightning was linked to synoptic conditions favouring severe storm development, especially those tied to the diurnal cycle. As a consequence of the lightning, as well as the very dry surface conditions, record forest areas were burned. In the Northwest Territories alone, forest fires burned 3 Mha in 1994 and 2.8 Mha in 1995.  相似文献   

10.
Windsonde data gathered over a nine-year period at three stations in the Southeast U.S. are stratified by season and by time of observation to provide average profiles depicting the diurnal variations in low-level winds. Significant variations are found (especially during the summer months) in wind speed, angle between wind direction and isobars, and the various terms of the kinetic energy budget equation. A qualitative model of the diurnal variations in planetary boundary-layer winds (over land) is developed. From a thesis submitted to the Graduate Faculty of Colorado State University in partial fulfillment of the requirements for the degree, Doctor of Philosophy.  相似文献   

11.
海表面风场可以用于获取许多大气和海洋现象的信号,高质量、高时空分辨率的海表面风场数据产品将有利于海洋-大气动力过程的研究.本文使用全球热带系泊浮标阵列计划(Global Tropical Moored Array Programs)的锚定浮标风场数据和西沙通量塔气象观测资料验证了Cyclone Global Navigation Satellite System (CYGNSS)的35°N~35°S海面遥感风场观测数据.结果表明,CYGNSS海表面风场与实测资料存在着2.17 m/s左右的平均均方根误差(RMSD),它可能源于观测数据和卫星遥感资料的观测误差,以及两者在空间和时间上未严格匹配而引起的代表性误差.另外,CYGNSS海表面风速的时间演变与实测资料非常一致,展现了CYGNSS在研究海洋-大气能量和动量交换过程方面的潜在应用价值.本文使用Madden-Julian Oscillation (MJO)和赤道东部印度洋上升流事件作为两个个例,说明了CYGNSS海表面风场资料的潜在应用价值.  相似文献   

12.
滇池区域性环流的数值模拟   总被引:3,自引:0,他引:3  
为了开发云南省滇池地区的磷资源,对云南滇池湖畔的中尺度环流状况进行了三维数值模拟,模式比较详细地考虑了各种物理过程,模拟结果与实测资料较吻合;滇池区域湖南白天为冷中心,夜间为暖中心;白天的垂直环流比夜间大得多,湖风比陆风影响范围也大得多,系统风对湖风影响较大。  相似文献   

13.
Summary A torrential precipitation event occurred in Catalonia (northeastern part of Spain) during 9 and 10 October 1994. More than 400mm were registered in the south of Catalonia. A diagnostic study shows that most of the ingredients to produce heavy rain (large scale upward vertical motion, instability, high moisture content in all the troposphere) were present over the Spanish coast and western Mediterranean. Mesoscale triggering mechanisms have been associated with the orographic forcing, not only through physical lifting of moist air by the coastal mountains, but also by the redistribution of the surface pressure field induced by the Atlas and Pyrenees ranges. A numerical simulation of the event using a meso- model has been performed. The model forecasts qualitatively well the rainfall distribution but underestimates the maximum rainfalls. The effects of the orography and the evaporation from the sea have been also studied. The simulations have shown that the action of the orography is decisive for the rainfall, pressure and wind distrbutions over the Spanish coast and the western Mediterranean. The isolated action of the evaporation turns to be much less important. However the combined effect of orography and evaporation is the most important factor in the areas where the greatest amount of rainfall occurred.With 26 Figures  相似文献   

14.
The effects of high-resolution land cover (LC) and topography (TP) on coastal wind circulations were evaluated in two different coastal regions of Korea (i.e. a southwestern coast (SWC), including a fairly complex coastline and a number of islands, and an eastern coast (EC), including a simple coastline with high mountains) during spring 2007. These analyses were performed based on a numerical modeling approach, using data sets with different resolutions, such as the LC and TP from the U.S. Geological Survey (USGS-LC and USGS-TP: a 900-m resolution), the LC from the Environmental Geographic Information System (EGIS-LC: a 90-m), and the TP from the Shuttle Radar Topography Mission (SRTM-TP: a 90-m). The combined effects of the LC and TP on the spatial distributions of the coastal winds in the SWC region during the day were somewhat higher than those of the EC region, mainly due to the daytime land surface warming or the extension of the coastal area resulting from changes in the LC. At night, the effects of the EC region were more apparent along the coastline and adjacent sea. From the correlation analyses, the effect of the LC on the vertical wind distributions on land during the day was higher in the SWC region than in the EC region and vice versa for the effect of the TP. In particular, large effects of the LC and TP occurred in the EC region at night and at sea due to the differences in the surface conditions and elevations resulting from the changes in the LC and TP, respectively. In addition, the circulation of coastal winds from the near surface to the upper levels occurred at a relatively high elevation in the EC region (about 1,500?m) relative to the SWC region (about 600?m).  相似文献   

15.
Summary A method to estimate monthly cloud conditions (monthly cloud frequencies) from multispectral satellite imagery is described. The operational cloud classification scheme SCANDIA (the SMHI Cloud ANalysis model using DIgital AVHRR data), based on high resolution imagery from the polar orbiting NOAA-satellites, has been used to produce monthly cloud frequencies for the entire year of 1993 and some additional months in 1991, 1992, 1994 and 1995. Cloud analyses were made for an area covering the Nordic countries with a horizontal resolution of four km. Examples of seasonal, monthly and diurnal variation in cloud conditions are given and an annual mean for 1993 is presented.Comparisons with existing surface observations showed very good agreement for horizontal cloud distributions but approximately 5% smaller cloud amounts were found in the satellite estimations. The most evident problems were encountered in the winter season due to difficulties in identifying low-level cloudiness at very low sun elevations. The underestimation in the summer season was partly fictious and caused by the overestimation of convective cloud cover by surface observers.SCANDIA results were compared to ISCCP (International Satellite Cloud Climatology Project) cloud climatologies for two selected months in 1991 and 1992. ISCCP cloudiness was indicated to be higher, especially during the month with anticyclonic conditions where a cloudiness excess of more than 10% were found. The regional variation of cloud conditions in the area was found to be inadequately described by ISCCP cloud climatologies. An improvement of the horizontal resolution of ISCCP data seems necessary to enable use for regional applications.The SCANDIA model is proposed as a valuable tool for local and regional monitoring of the cloud climatology at high latitudes. More extensive comparisons with ISCCP cloud climatologies are suggested as well as comparisons with modelled cloudiness from atmospheric general circulation models and climate models. Special studies of cloud conditions in the Polar areas are also proposed.With 14 Figures  相似文献   

16.
Summary This paper is concerned with sea/land-breeze systems over relatively flat tropical islands to the north of continental Australia. The purpose of this study is to contribute to the relatively small body of knowledge on tropical island sea/land-breeze systems in this region and to highlight their particular characteristics. The evolution and structure of coastal circulations over the Tiwi Islands, northern Australia are examined using observations made during the Maritime Continent Thunderstorm Experiment (MCTEX), November/December 1995. During the transition period between dry and wet (monsoon) seasons, strong diurnal surface heating dominates the local meteorology. Thermally modified pressure differences across the coastline are seen to control the timing, direction and intensity of local winds. The evolution and structure of the resulting circulations appear to be affected greatest by tropospheric stability and friction, while the Coriolis force, synoptic winds and topography are of much less importance in this case. Consequently, even small differences in surface properties seem to produce strong and well defined local wind circulations. The depth of the sea breeze averaged 1200 m, while the land breeze was considerably shallower (290 m). Return flows were evident in both circulations, although better defined in land breeze cases. Day to day variation in vertical structure was considerable and appeared to be controlled by stability in the lower troposphere. Spatial patterns of surface temperature, pressure and wind show formation of an island heat low by day and a cool high pressure centre at night, resulting in island scale convergence and divergence, respectively. Received February 27, 2000/Revised October 16, 2000  相似文献   

17.
一维热扩散湖模式在太湖的应用研究   总被引:2,自引:1,他引:1  
利用在太湖获得的2010年8月11-28日的观测资料研究了一维热扩散湖模式在太湖的适用性,通过对比模拟进一步研究了影响太湖湖表温度模拟的主要因子。该湖模式对太湖最初的模拟结果并不理想,模拟的湖表面温度与观测有较大的系统性偏差,温度的日变化幅度与观测相比也偏小。通过分析该模式对太湖的模拟效果不理想的可能原因,针对太湖的生态环境和污染情况,设计了18个测试参数的敏感性试验,从敏感性试验的结果分析得到,适用于太湖的、依赖于湖泊类型的3个参数应做如下修改:消光系数(η0)应放大3倍,湖泊表层吸收的太阳辐射系数(β)应取0.8,粗糙长度(z0)采用公式计算得到。用新得到的适用于太湖的3个参数,模拟得到的结果与最初的模拟结果和观测资料对比,发现采用新的参数后,模拟结果比最初的模拟结果有了很大的改进,模拟的湖表温度基本接近观测,模拟的湖水垂直剖面时间序列图也跟观测吻合得较好,随之的感热、潜热通量的模拟也都与观测接近。最后,对输入湖模式的主要大气参量(太阳辐射、2 m气温及风场)±10%的误差引起的模式模拟的湖表面温度误差进行分析,结果表明该湖模式对大气强迫场的误差敏感度不高;相比之下,模拟结果对风场敏感性最小,对辐射和气温的敏感度相当。  相似文献   

18.
This paper presents results from a statistical validation of the hindcasts of surface wind by a high-reso-ution-mesoscale atmospheric numerical model Advanced Research WRF (ARW3.3), which is set up to force the operational coastal ocean forecast system at Indian Na- tional Centre for Ocean Information Services (INCOIS). Evaluation is carried out based on comparisons of day-3 forecasts of surface wind with in situ and remote-sensing data. The results show that the model predicts the surface wind fields fairly accurately over the west coast of India, with high skill in predicting the surface wind during the pre-monsoon season. The model predicts the diurnal variability of the surface wind with reasonable accuracy. The model simulates the land-sea breeze cycle in the coastal region realistically, which is very clearly observed during the northeast monsoon and pre-monsoon season and is less prominent during the southwest monsoon season.  相似文献   

19.
Summary Continental wind storms are common along the Mediterranean coast. Along the northern coast they are mostly cold, similar to the Bora or the Mistral, and along the southern coast they are mostly warm, e.g., the Ghibli or the Shirocco. At the eastern Mediterranean basin and the Levant region, these storms are intermittently warm and cold during the same season and often even during the same event. Quasi-stationary systems, as well as moving disturbances, are the cause of such wind storms. Accordingly, the resulting weather conditions may be extremely converse due to the characteristics of the advected airmass. Specific regions in Israel, sensitive to easterly storms, are influenced by these wind storms for about 10% of the year (e.g., the westerly slopes of the mountains and valleys with west-east orientation). The frequency, however, of widespread storms covering the entire region is only approximately 1.4% of the entire year. These wind storms are therefore classified in the present study according to their climatological and synoptic characteristics; indicating that the dominant synoptic situation is the Red-Sea trough and the warm advections. These storms appear only from October-May and are most frequent during the cold season. The diurnal course is characterized by a strengthening in the morning hours and a weakening at noon and in the afternoon hours, due to the opposing effect of the westerly sea breeze, suppressing the easterly winds and the effect of katabatic winds. Nevertheless, synoptic conditions may contribute to this tendency as well. Accordingly, a significant increase in the frequencies of easterly storms, in relation to distance from the seashore has been identified. Although most of the stormy days are with westerly winds, the easterly wind storms has vast environmental implications, creating damage especially to agriculture and occasionally also to property and life; coastal flooding, potential air pollution, intensifying of forest fires and occasionally dust and sand storms. Received September 9, 1996 Revised March 6, 1997  相似文献   

20.
卢莹 《气象》1988,14(6):10-15
本文用修改的一层σ坐标中尺度模式,模拟了我国部分沿海地区地面风场及其日变化,讨论了复杂地形和非绝热强迫效应对局地天气的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号