首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 797 毫秒
1.
本文基于中国气象局成都高原气象研究所2017年西南涡加密观测资料,对比分析了西南低涡主要源地九龙站在西南低涡/晴朗这两种不同天气背景下,各个基本物理量的日变化特征及存在的差异,认为:西南涡天气背景下,边界层高度较低,而晴朗天气状况下,边界层大气湍流运动强烈,对流混合伸展高度非常惊人,能超过3000m。西南涡天气背景下,夜间大气较为暖湿,气压显著偏低,上层大气风速较大,便于动量下传。晴朗天气背景下,大气较为干燥,温度日较差偏大,大气压较高,白天湍流混合强。越靠近地面差异越显著,差值随高度的增加而逐渐减小。  相似文献   

2.
李秋阳  王成刚  王旻燕 《气象》2022,48(5):580-594
基于2016年8月28日至9月2日在北京市宝联站、朝阳站、大兴站获得的逐3 h加密探空资料,利用WRF V3.9.1模式和WRF-3DVar系统,对北京地区大气边界层进行数值模拟试验,研究加密探空资料同化对边界层数值模拟的影响。结果表明:同化形成的分析场较背景场更接近观测值,更能表现边界层内真实大气的热力、湿度状态及动力特征。位温、比湿、纬向风、经向风、风速分析场的均方根误差分别较背景场的减少了86%、59%、24%、44%、19%,体现出同化的较强修正作用。加密探空资料同化的预报效果在模式积分6 h内最好,之后同化作用的大小及范围逐渐减弱。加密探空资料同化对边界层内大气湿度状态在整个预报时段内均有改进,对边界层内大气热力状态的改进持续6 h,对于边界层内大气动力特征的改进,纬向风改进较多,经向风和风速不明显,这与风的自身属性、北京市的复杂地形有关。另外,加密探空资料的站点数在空间水平方向上比较少也是导致同化在分析场的改善作用明显但是效果难以持续较长时间的原因之一。  相似文献   

3.
利用WRF模式及WRFDA同化系统,引入业务探空资料和西南涡加密探空资料,对一次四川盆地奇异路径低涡耦合大暴雨过程进行了数值试验,对比检验不同同化试验对本次过程降水和低涡移动路径的模拟能力,分析了加密探空资料同化对西南涡结构及其降水演变的影响。结果表明:在同化业务探空资料的基础上,引入西南涡加密探空资料能改善模式对本次降水和低涡移动路径的模拟,而仅同化业务探空资料对模拟结果的改善作用有限;引入西南涡加密探空资料,一方面能在初始风场上产生气旋式扰动,增加初始高原涡和西南涡的强度,另一方面通过调整初始四川盆地上空大气温、湿度结构,使模式在积分初期就能产生出实况量级的降水;西南涡加密探空资料的同化试验揭示了仅靠高层的高位涡不足以激发和维持700 hPa的西南涡,需要通过低层水平辐合引起正涡度增加并向上输送来增强700 hPa的气旋式环流,进而促进西南涡的移动和发展,而模拟初期降水的潜热释放也起重要作用,加深了对西南涡及其降水成因的认识。   相似文献   

4.
利用常规观测资料以及小时观测降水量资料,对2014年8月31日—9月2日重庆地区一次大暴雨过程进行分析,在此基础上采用中尺度数值模式WRF及其三维变分同化系统WRF 3D-Var将常规探空观测资料同化进NECP/NCAR再分析资料产生初始场,对比分析同化与未同化常规探空资料的模式模拟的降水量分布特征及同化探空观测资料对模式模拟的中尺度系统结构特征的影响。结果表明,此次暴雨的发生是在对流层高层200 hPa南亚高压与高空急流造成的高层辐散、500 hPa大槽靠近以及副热带高压西移这种有利的大尺度环流背景下,对流层低层的西南低涡、切变线、低空急流在重庆地区发生发展的结果。对比分析模式的模拟结果,两次模拟都较好地再现了此次暴雨过程的大尺度环流特征,同化探空观测资料后模拟的降水落区分布及量级得到改善,对暴雨以上量级的降水改进尤为明显。模式初始时刻分析场的增量表明,与此次暴雨过程的形成发展密切相关的大尺度系统(南亚高压、副热带高压)、中尺度系统(低涡、急流)以及水汽输送在初始场同化常规探空资料后均得到了增强,这为对流系统的发展维持提供了更加有利的条件。降水最强时刻强降水区域的垂直结构分析显示,在同化探空观测资料后,模式模拟的散度、涡度、垂直速度以及大气热力结构的强度和高度较未同化探空资料的结果都得到了不同程度的增强,这表明同化探空观测资料改进了模式初始场的分布特征,进而对模式模拟的中尺度对流系统的结构产生重要影响。  相似文献   

5.
卢萍  杨康权  李英 《大气科学》2017,41(6):1234-1245
本文利用中国气象局成都高原气象研究所西南涡加密观测试验获取的探空资料及地面台站资料,对比分析了高原东侧的四川省境内不同海拔高度台站的边界层特征,结果表明:高海拔地区地表大气受陆面的影响更为剧烈,日变化幅度更大,且极值出现时间更早。温度/比湿/风速的差异都主要体现在低层边界层大气中,越靠近地面,差异越显著。其中,温度递减率在02:00(北京时,下同)最小,14:00最大,高海拔测站受陆面影响的大气层厚度比低海拔测站大,低海拔测站在近地层300 m以下大气中存在明显的逆温现象。14:00近地层大气的比湿最小,午夜02:00近地层大气的比湿最大,高海拔地区低层大气的平均比湿递减率小于低海拔地区。高海拔地区风速日变化幅度大,4个时次的风速廓线形态差异也大;低海拔地区风速变化幅度小,4个时次的风速廓线形态也比较一致。高海拔台站地表大气的日变化幅度大,极值出现时间略早。  相似文献   

6.
陈炜  李跃清 《大气科学》2019,43(4):773-782
本文利用2012~2015年西南涡加密观测大气科学实验的剑阁、金川、九龙和名山四站探空资料,统计分析了6~7月西南涡活动期间对流层中、高层(6~12 km)的重力波过程,结果表明:青藏高原东部川西高原南部的九龙站与其余三站不同,重力波源主要来自对流层上层,波能传播方向向上,剑阁、金川和名山三站重力的波源主要来自对流层下层,波能传播方向向下。重力波过程在不同类型的西南涡活动中有明显差异,在移出型西南涡活动初期,重力波水平传播方向主要为东北向,其上传概率远大于下传概率,波动的动能和潜能较大且变化剧烈;而对应源地型西南涡,初期主要呈西北—东南向传播且重力波上传与下传概率相当,动能和潜能较小且变化相对平缓同时本次研究表明,重力波水平传播方向对西南涡的移动方向也有一定指示作用。按照发生时刻本文将重力波分为日发型重力波和夜发型重力波,在夜发型西南涡初期,重力波活动夜发(北京时20:00~08:00)的概率较大,这表明重力波的夜发性与西南涡的夜发性可能存在一定关联。  相似文献   

7.
卢萍  李旭  李英  李跃清  郑伟鹏 《大气科学》2016,40(4):730-742
本文基于AREM(Advanced Regional Eta Model)模式,结合中国气象局成都高原气象研究所西南低涡加密观测科学试验得到的探空观测第一手资料,通过对2012年7月3~4日四川区域性暴雨天气过程(20120703过程)进行数值模拟分析,结果表明:(1)降水雨带的分布主要取决于西南低涡移动路径,不同初值会使得低涡路径在磨合协调期产生强摆动,稳定后则在此基础上,随着环境流场继续移动发展。(2)引入4个加密探空站点资料会对整个大气物理量场造成一定影响,最大差值分布在这些站点附近,热力和动力物理量场最大偏差中心并不重合。时间演变直观地说明了初值对局地大气状态的影响时段有限,主要集中在前期,与模式自身调整期相重叠。(3)初始的大气状态必然会随着模式的磨合过程进行调整,不同初值在调整期能对中小尺度低涡系统的位置及强度产生影响,形成各自稳定的低涡系统初态。(4)低涡中心所对应的散度、涡度、垂直速度关系非常密切,但三者强度和发展高度的演变并非完全一致。  相似文献   

8.
藏北那曲地区大气边界层特征分析   总被引:30,自引:14,他引:16  
利用“全球协调加强观测计划(CEOP)亚澳季风之青藏高原试验”(CAMP/Tibet)2002年8月预试验期间(PLOP)藏北高原观测站(BJ站和安尼站)的无线电探空仪的探空资料,分析了藏北那曲地区的大气边界层位温、比湿、风速的日变化特征及稳定边界层和对流边界层特征。结果表明,藏北那曲地区边界层日变化大,对流混合层高度最高可达1800m,下雨天形成对流边界层的时间晚于阴天和晴天的时间。  相似文献   

9.
利用中国西北地区2015年9月至2016年8月38个站点L波段探空观测、2016年7月加密探空观测和ERA-Interim边界层高度资料,对比分析了西北地区大气边界层高度变化特征。观测资料表明,在中国西北地区,08:00(北京时,下同)冬季边界层高度最高; 20:00春季边界层高度最高,边界层高度从西部到东部有显著降低的趋势。ERA-Interim资料基本能表现出边界层高度的区域分布,但相对于探空观测得到的边界层高度,除夏季20:00外,ERA-Interim再分析资料边界层高度均偏低。全年平均而言,08:00(20:00)偏低160 m(170 m),其中在08:00(20:00),冬季(春季)偏低最显著。08:00边界层高度与低层稳定度、近地层温度和风速相关更加显著; 20:00边界层高度与低层稳定度和相对湿度相关更加显著。2016年7月加密观测资料对比表明,ERA-Interim资料的对流(中性)边界层高度显著偏高;低层稳定度、相对湿度偏小,风速偏大可能是造成边界层高度偏高的原因; ERA-Interim资料的稳定边界层高度偏低,与低层稳定度和近地层温度偏低相关,但其影响因素相对更加复杂。  相似文献   

10.
王宏斌  吴泓  李永  徐家平  祖繁  张志薇 《气象》2020,46(1):89-97
2018年3月28—30日、6月20—26日和9月5—13日在江苏省盐城市射阳站开展了旋翼无人机大气边界层垂直结构观测试验,并与L波段雷达探空资料进行对比,验证无人机观测资料精度。结果表明无人机观测的温度、相对湿度、风向、风速廓线与探空观测资料具有较好的一致性。二者温度、相对湿度的相关系数均为0.98,温度绝对偏差为0.57℃,相对湿度绝对偏差为4.25%,风向相关系数为0.98,绝对偏差为11.5°,二者风速的相关系数为0.91,绝对偏差为1.88 m·s~(-1),且无人机探测的风速为对应高度上的瞬时风速,可以更好地反映出边界层内风速细节变化特征。试验期间,无人机观测到一次夏季浓雾过程边界层结构细致变化特征,其观测的雾的边界层结构特征和宏观特征与探空观测基本一致。验证结果表明无人机在边界层气象观测中具有很好的应用前景。  相似文献   

11.
Using the sounding data of wind, temperature, and humidity in the boundary layer and micrometeorological data on the earth's surface observed in the same period in Dunhuang arid region of Northwest China,this paper researches characteristics of potential temperature, wind, and humidity profiles, confirms the structure and depth of thermodynamic boundary layer in Dunhuang region, and analyzses the relationship of depth of thermodynamic boundary layer with surface radiation, buoyancy flux as well as wind speed and wind direction shear in the boundary layer. The results show that the maximum depth of diurnal convective boundary layer is basically above 2000 m during the observational period, many times even in excess of 3000 m and sometimes up to 4000 m; the depth of nocturnal stable boundary layer basically maintains within a range of 1000-1500 m. As a whole, the depth of atmospheric boundary layer is obviously bigger than those results observed in other regions before. By analyzing, a preliminary judgement is that the depth of atmospheric thermodynamic boundary layer in Dunhuang region may relate to local especial radiation characteristics, surface properties (soil moisture content and heat capacity) as well as wind velocity shear of boundary layer, and these properties have formed strong buoyancy flux and dynamic forcing in a local region which are fundamental causes for producing a super deep atmospheric boundary layer.  相似文献   

12.
In this paper we present first-time measurements of ozone profiles from a high altitude station in Quito, Ecuador (0.19°S, 78.4°W, and 2391 masl) taken from June 2014 to September 2015. We interpret ozone observations in the troposphere, tropopause, and stratosphere through a zonal comparison with data from stations in the Atlantic and Pacific (Natal and San Cristobal from the SHADOZ network). Tropospheric ozone concentrations above the Andes are lower than ozone over San Cristobal and Natal for similar time periods. Ozone variability and pollution layers are also reduced in the troposphere above the Andes. We explain these differences in terms of reduced contributions from the boundary layer and from horizontal transport. In the tropical tropopause layer, ozone is well-mixed up to near the cold point tropopause level. In this regard, our profiles do not show constraints to deep mixing above 14 km, as has been consistently observed at other tropical stations. Total column ozone and stratospheric column ozone are comparable among the three sites. However, the contribution of tropospheric column ozone to total column ozone is significantly lower above the Andes. Our comparisons provide a connection between observations from tropical stations in equatorial South America separated by the wide continental mass. Identified differences in ozone throughout the atmospheric column demonstrate the global benefit of having an ozone sounding station at the equatorial Andes in support of global monitoring networks.  相似文献   

13.
本文对2010年7月14~19日、7月22~24日、8月17~19日四川出现的3次区域性大暴雨过程,比较分析了成都区域中心及国家气象中心运行的GRAPES模式降水预报情况以及中、高层环流形势,通过天气学检验得出以下结论:(1) G-SC模式预报降水范围偏小、强度偏弱,强降水中心存在较大偏差;G-BJ模式能预报出降水的主要落区,但降水强度偏弱,虚假强水中心偏多;(2) GRAPES模式对青藏高原东侧天气系统的预报能力偏弱,G-BJ对大尺度环流系统的预报能力优于G-SC模式;(3)九龙站和名山站单站探空廓线图显示G-SC模式在对流层高层温度和风速不随高度变化,对流层底层比湿较实况偏小,因此,温度场、风场以及湿度场强度及分布都有待改善;(4)成都区域中心运行的GRAPES模式在初值、高度场强度、近地面温度等方面都具有很大的改进空间,这需要在资料同化、边界层方案、地形处理等方面做工作。   相似文献   

14.
利用2012年6—9月南海夏季风期间的近海海洋气象观测平台 (海上平台站) 和电白国家气候观象台 (电白站) 的地面气象站资料,气象塔资料以及GPS探空资料对海上平台站和电白站两站在季风活跃期和非活跃期的大气边界层结构特征进行研究分析。结果表明,活跃期与非活跃期两地的大气边界层结构特征有明显差异。(1) 在活跃期两站近地层风向全天由东南风主导,风速较大,且两站均出现连续降水,受云系和降水的影响,与非活跃期相比,电白站近地层日平均气温降低约为2 ℃;非活跃期两站风向全天无规则变化,且风速值小。(2) 在活跃期大气边界层内风向均为一致的东南风,风速较大,200 m以上的风速均大于8 m/s,而在非活跃期大气边界层内风速较小,风向变化较大,同一时刻不同高度的风向差可达180 °。(3) 在季风非活跃期混合层高度最高可达937 m,而在活跃期,受降水和云系的影响混合层高度明显降低,最大高度仅为700 m左右。(4) 活跃期受连续降水影响,大部分时刻的大气边界层内相对湿度大于80%。由此可见在季风活跃期与非活跃期不仅海陆气能量交换发生变化,大气边界层结构特征也有显著变化。   相似文献   

15.
本文基于多年连续观测所得的九龙站加密探空资料,通过对比分析,认识到该站的边界层大气在夏季呈现以下特征:大气温度/湿度随高度增长而降低,不同时次温度/湿度的差异主要集中在中低层大气中,越靠近地面大气温度/湿度差异越突出。从不同时次的表现来看,08时的温度最低,14时温度值最高。08时和14时大气的比湿较小,02时和20时的大气比湿较大。位温则是随高度增长,最大差异出现在3320m以下大气层中,14时和20时位温廓线存在明显的绝热及超绝热现象,该2个时次大气边界层表现为明显的混合边界层特征,低层大气层结为静力不稳定。而08时和02时的大气廓线则呈现稳定边界层特征。四个时次风速廓线都是次地转的,边界层内某一高度皆有一个风速极大值出现,20时边界层内风速极大值最大。地表物理量逐日演变情况为:08时温度最低,其次是02时,然后是20时,最高温度出现在14时,这个时次的变动幅度也最为显著。14时、08时比湿均值最小,20时、02时平均比湿较大,20时变幅最大。最低气压出现在20时,其次是14时,然后是08时,最高气压出现在02时,20时变幅最大。02时地面风速最小,其次是08时,再次为20时,14时风速最大,变动幅度最大。   相似文献   

16.
北京一次浓雾过程的边界层结构及成因探讨   总被引:3,自引:2,他引:1  
熊秋芬  江亓军  王强 《气象科技》2007,35(6):781-786
利用逐小时地面加密观测资料、系留气球探空资料、常规观测资料、NCEP再分析资料等对2004年11月30日至12月1日发生在北京的一次浓雾过程进行了分析。结果表明:浓雾过程发生在边界层有浅槽东移,地面为均压场、微风、入夜后迅速辐射降温的条件下;浓雾生成前、后近地层维持辐合区,有利于水汽的聚集;在浓雾发生发展的不同阶段,边界层中逆温层、湿度和风的分布是有差别的;从动力学的角度对温、湿场结构的形成原因进行了初步探讨,指出了与其它辐射雾的不同点。  相似文献   

17.
In this issue, Ramonet et al. revealed a positive trend in European, atmospheric CO2 concentrations relative to a marine, North Atlantic reference baseline, for the years 2001–2006. The observed build up mainly occurred during the cold season where it reaches a 0.8 ppm yr−1 at low-altitude stations to a 0.3 ppm yr−1 at mid-altitude stations. We explore the cause of this build-up using the mesoscale model CHIMERE. We first model the observed trends, using interannually varying fluxes and transport, then suppress the interannual variability in fluxes or aspects of transport to elucidate the cause. The run with no interannual variability in fluxes still matches observed trends suggesting that transport is the major cause. Separate runs varying either boundary layer height or winds show that changes in boundary layer height explain the trends at low-altitude stations within the continents while changes in wind regimes drive changes elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号