首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
本文基于多年连续观测所得的九龙站加密探空资料,通过对比分析,认识到该站的边界层大气在夏季呈现以下特征:大气温度/湿度随高度增长而降低,不同时次温度/湿度的差异主要集中在中低层大气中,越靠近地面大气温度/湿度差异越突出。从不同时次的表现来看,08时的温度最低,14时温度值最高。08时和14时大气的比湿较小,02时和20时的大气比湿较大。位温则是随高度增长,最大差异出现在3320m以下大气层中,14时和20时位温廓线存在明显的绝热及超绝热现象,该2个时次大气边界层表现为明显的混合边界层特征,低层大气层结为静力不稳定。而08时和02时的大气廓线则呈现稳定边界层特征。四个时次风速廓线都是次地转的,边界层内某一高度皆有一个风速极大值出现,20时边界层内风速极大值最大。地表物理量逐日演变情况为:08时温度最低,其次是02时,然后是20时,最高温度出现在14时,这个时次的变动幅度也最为显著。14时、08时比湿均值最小,20时、02时平均比湿较大,20时变幅最大。最低气压出现在20时,其次是14时,然后是08时,最高气压出现在02时,20时变幅最大。02时地面风速最小,其次是08时,再次为20时,14时风速最大,变动幅度最大。   相似文献   

2.
本文将高原东坡及其下游盆地区域加密探空观测的低层大气物理要素场与WRF模式结果进行对比分析,得到如下结论:1)川西高海拔地区,模式格点与站点海拔差异非常大,模式地形普遍偏高,最大差值超过上千米。低海拔地区,模式格点与站点海拔比较接近。2)在高海拔地区,差异主要体现在近地层大气中;00时的比湿差异最小;06时的比湿差异最为显著,模拟的低层大气的比湿比探空观测值大。06时模拟的温度高于探空观测,其它12、18、00时3个时次则略低于探空观测。除了初始场,模拟的低层大气的水平风速普遍比探空观测的值大。3)在低海拔地区,模式初始场给出的低层大气比湿、温度与探空观测差异较小;06、12、18时,模拟的大气比湿通常比探空观测偏湿,温度也显著偏高,4个时次中,正午时分低层大气的温湿偏差最显著。同一时次,积分时长越短模拟的风速越小,低层大气中常常存在一个风速的大值区。4)模式比较稳定,没有随着模拟时长的增加,误差明显增长。模拟的低层大气比湿、温度、水平风速逐日波动形态与观测基本一致。  相似文献   

3.
利用温江观测站边界层塔和探空获取的观测资料,从地表物理量的日变化、边界层的垂直结构及逐日变化这些方面分析该站夏季边界层特征,得到以下结论:(1)地表各物理量都具有明显的日变化特征,呈现一峰一谷的演变状态,其中地表热通量、动量通量、气温以及风速的峰值皆出现在午后,谷值出现在凌晨,湿度与气温日变化是反位相的。(2)近地层低层大气气温在早晚时段,随高度的增加而上升,呈逆温状态;午间时段随高度的增加而下降。9 m以下大气在午后的比湿梯度最大。风速值随着高度的增高而增大,风切变随着高度的增高而减小。(3)探空观测的边界层垂直结构显示:夏季温江站早晚边界层大气层结稳定,而午后表现为典型的混合边界层特征。大气温/湿度差异随高度增长而降低,各个时次温/湿度的差异都主要集中边界层低层,越靠近地面大气温/湿度差异越突出。8:00的温度最低,14:00最高。14:00的大气比湿最小,2:00和20:00较大。近地层风速随高度增长较快,在离地2~300 m左右高度达到一个极值,4个时次的风速差异不大。(4)地表温度、短波辐射、感热通量对边界层的高度和降水都有一定的影响。  相似文献   

4.
本文基于2016年6月21日~7月31日温江站边界层塔和加密探空观测获取的资料,对比分析了该站有雨日和无雨日的边界层大气特征,得到以下结论:1、温江站7月的降水量较多,降水时段以凌晨2:00~6:00居多,呈现典型的“夜雨”特征。2、边界层内大气各个气象要素场在有无降水日具有非常明显的差异,探空观测的低层大气表现为:无雨日白天边界层呈现典型的混合边界层特征。有雨日边界层大气温度总是小于无雨日,在极大值出现的午后时段二者的差值最大。有雨日近地层大气比湿在8:00、14:00和20:00三个时次都明显高于无有雨日,比湿日变化幅度低于无雨日。温江站边界层低层大气的风速总体较小,有雨日的风速明显大于无雨日。3、边界层塔观测显示:有雨日太阳短波辐射以及各个地表通量的极大值仅为无雨日的2/3左右。白天,有雨日的温度低于无雨日,日变化幅度比无雨日低3oC左右;夜间二者都呈现显著的逆温现象。有雨日白天比湿高于无雨日,夜间则低于无雨日,有无雨日比湿日变化幅度比无雨日少2g/kg;白天,有雨日风速日变幅也略小于无雨日,除了午后时段有雨日在凌晨2:00时还出现另外一个风速极大值点;有雨日的气压值总是略高于无雨日,白天的气压差值比夜间大。白天,有雨日各个地面观测量的极值出现时间总是略晚于无雨日1h左右。  相似文献   

5.
基于1981-2010年CERA-20C全球大气边界层高度(Boundary layer height,BLH)再分析资料对青藏高原边界层高度的日变化特征,包括日变化的季节变化、年代变化与年际变化进行研究。结果表明:BLH大值区在海拔大于5 000 m地区以及沙漠干旱地区,其中尼玛等地为边界层高度大值区的扩散源地。03:00(世界时,下同)-06:00 BLH增加最剧烈,增幅达948. 67 m·(3h)~(-1); 09:00-12:00降低最剧烈,降幅达760. 02 m·(3h)~(-1)09:00为最大值,晚于非高原地区(06:00),30年平均最大值可达1 982. 764 m,日变化最大值可达2 901. 21 m,昼高夜低。BLH最大值在春季为最大、夏季最小,BLH最小值在夏季最大、秋季最小。高原西坡BLH在春秋季最大,腹地在冬季最大,东坡BLH低,变化幅度小。03:00 BLH逐月变化趋势为单峰变化特征。BLH除夏季年际变化平稳变化以外,春、秋、冬三季在20世纪80年代中期,20世纪90年代末与21世纪初均存在较大波动。冬季边界层高度近30年逐渐增加,特别是在21世纪初的大幅持续增加值得重视。春季高原腹地处于积雪融化时期,积雪融化带走地表热量,促使春季地表气温更低,边界层高度春季与地表气温呈负相关,同时夏季相对湿度为波状分布,相对湿度梯度最小值与边界层顶相对应,边界层高度在春季比夏季更高。边界层高度发展最高时,高原边界层内通常为上升运动与下沉运动交替,为边界层发展提供一定的动力条件。  相似文献   

6.
陆面过程与大气边界层之间耦合关系是理解青藏高原热力效应的关键环节和难点之一。本文基于那曲高寒气候环境观测研究站2019年5月、 7月和10月地面及探空观测数据分析了青藏高原那曲地区地表能量收支及大气温湿垂直廓线的日变化和季节差异,探讨了该地区干湿季大气边界层高度的演变规律。结果表明,在5月观测期间内受日间净辐射强度变化的影响,对流边界层在晴天较高,为2842 m;阴天较低,为1481 m,强对流天气也可能使其在低层转变成稳定边界层。同时,位于近地层大气的感热和潜热交换为大气边界层的维持和发展提供了能量支持,位温和比湿垂直廓线能够正确反映出那曲地区大气边界层高度的季节性差异,对流边界层高度在5月最高、 10月次之、 7月最低,而稳定边界层在7月最高、 5月次之、 10月最低。  相似文献   

7.
基于MODIS的祁连山地区陆面温度空间分布研究   总被引:1,自引:0,他引:1  
利用Becker-Li的算法,获取了祁连山地区不同时相的陆面温度空间分布规律。研究发现:瞬时陆面温度的空间分布与同步气温数据的宏观变化规律基本一致。多样的地形地貌和不同的下垫面地表覆盖类型,决定了其陆面温度的空间分布格局。进而讨论了陆面温度随海拔高度的垂直分异规律。祁连山地区区域陆面温度垂直递减率的变化范围为5.42~6.56℃/km,正北、正东、正南和正西方位上陆面温度的垂直递减率分别为6.56、5.73、5.42和5.84℃/km。其中朝向太阳方向的南、东坡梯度值最小,而背向太阳方向的西、北坡值最大。高海拔地区地表温度的垂直递减率要高于低海拔地区。  相似文献   

8.
应用大气二维边界层数值模式,对2008年夏季洪河国家级自然保护区沼泽湿地1000m高度边界层的温度、湿度廓线进行了3次模拟试验,并模拟分析了风速和下垫面粗糙度对湿地边界层温、湿廓线结构的影响.结果表明:(1)大气二维边界层模式可以较好的模拟湿地下垫面边界层的温、湿结构,并且该模式对位温的模拟效果优于比湿;(2)风速和粗...  相似文献   

9.
徐桂荣  崔春光 《湖北气象》2009,28(2):112-118
利用2007年12月10-24日在红原、温江和宜昌同步观测的3小时加密探空资料,分析了青藏高原东部及下游关键区大气边界层位温廓线日变化特征,以及对流边界层高度和稳定边界层高度的变化特征.分析结果表明,不同地形位温廓线具有相同的日变化特征,对流边界层在白天出现和发展,而稳定边界层在夜间出现和发展;对流边界层的发展史和发展高度与海拔高度有关,高海拔地区对流边界层的发展史较短但发展高度较高,而低海拔地区对流边界层的发展史较长但发展高度较低;稳定边界层的发展史和发展高度也与海拔高度有关,高海拔地区稳定边界层的发展史较长且发展高度较高,而低海拔地区稳定边界层的发展史较短且发展高度较低;对流边界层的最大发展高度多出现在地方时17时,而稳定边界层的最大发展高度多出现在地方时02时;红原、温江和宜昌的对流边界层高度分别可达4 930 m、1 000 m和710 m.而其稳定边界层高度分别可达1 100 m、920 m和650 m.  相似文献   

10.
利用中国气象局成都高原气象研究所建立的5个边界层站(湄潭、巴中、什邡、曲麻莱、狮泉河)2019年的观测资料,对比分析青藏高原及周边地区近地层大气要素变化和陆—气能量交换特征及异同点,探讨其原因。结果表明:(1)青藏高原及周边地区近地层大气温度、相对湿度、风速、感热通量、潜热通量、动量通量均符合一峰一谷的常规日变化特征,气压具有双峰双谷的日变化特征。(2)高海拔台站近地层温度日变幅(12℃)高于周边低海拔地区(4~6℃),季变幅与海拔高度的关系不显著。(3)相对湿度与温度关系密切,相对湿度的垂直结构和日变化都具有明显的区域差异,其垂直梯度夜间显著高于白天,峰值出现时间随夏、秋、春、冬季呈现季节性滞后,而谷值超前。(4)风速春季较大,夏、秋季次之,冬季小,季变幅略小于日变幅;低海拔区域的风速及其日变幅均显著低于高海拔区域。(5)低海拔区域气压季变幅(>13 hPa)远高于日变幅(2.5 hPa左右),而高海拔区域气压季变幅(>3 hPa)略低于日变幅(2 hPa左右)。(6)感热通量春季大、冬季小;感热通量和动量通量在高海拔区域均较高,二者具有较一致的日、季变化特征,表明大气动...  相似文献   

11.
BJ-RUC系统对北京夏季边界层的预报性能评估   总被引:1,自引:0,他引:1       下载免费PDF全文
以北京市观象台2010年8月、2011年8月每日3次 (08:00, 14:00, 20:00,北京时,下同) L波段探空秒间隔数据为实况,对BJ-RUC系统 (rapid updated cycle system for the Beijing area) 分析和预报边界层性能进行了初步评估。结果表明:BJ-RUC系统对北京地区夏季白天边界层的细致特征具有较好的预报能力,但也存在明显的系统性误差。08:00边界层偏冷; 14:00和20:00 1 km以下的边界层则显著偏暖, 边界层内明显偏湿。整体上模式对边界层内温度、湿度的预报误差均高于自由大气。该系统对北京地区边界层内早晨 (08:00) 从夜间山风向白天谷风环流过渡、午后 (14:00) 到日落后 (20:00)1500 m以下盛行西南偏南气流的日变化特征具有较强的预报能力。系统预报的14:00边界层顶高度与评估时段内实际对流边界层高度的变化趋势一致。但预报的对流边界层顶偏高,这与BJ-RUC系统采用YSU边界层参数化方案的垂直混合更强有关。  相似文献   

12.
利用那曲地区的微脉冲激光雷达探测资料,采用梯度法获取了那曲地区白天混合层高度随时间的演变信息及混合层特征参数,结果表明混合层在上午发展缓慢,中午以后发展迅速,14:00(北京时)前后达到稳定;强烈的对流热泡活动导致混合层高度起伏较大,参数化反演得到的卷夹层厚度达到0.4~0.5 km,卷夹比在0.2左右。利用探空资料结合日最大位温资料,采用气块法得到了高原地区7个站点的每日最大混合层高度数据集。通过对由激光雷达和探空资料得到的最大混合层高度结果进行对比,发现二者有很好的一致性(相关系数0.85,均值偏差0.11 km,均方根误差0.30 km,并通过0.05显著性水平的t检验)。最大混合层高度在7个站点均有明显的逐日变化特征。从年均值看,最大混合层高度与海拔高度之间没有明显相关关系。从季节均值看,格尔木与都兰站表现出明显的春高冬低的分布特征,而其它五个站点则表现为春高夏低,表明高原地区的盆地地形和山地地形对混合层高度有显著而不同的影响。通过定义热力稳定度和确定特征气压层高度,利用热力稳定度与最大混合层高度之间良好的线性关系,获取了一种简便地获取最大混合层高度的统计方法。  相似文献   

13.
西藏色齐拉山地区立体气候特征初步分析   总被引:1,自引:0,他引:1  
利用西藏色齐拉山地区不同海拔高度的8个自动站和3个实测气象站1年的近地面观测资料,分析了该地区气温、地温、降水量、湿度和风速等气象要素的季节变化特征,探讨了东、西坡局地气候特征差异形成的原因。结果表明:色齐拉山地区1月为最冷月、7月为最暖月;月平均最高气温、最低气温与平均气温的季节变化一致。气温日较差大年较差小。年平均气温直减率东、西坡分别为0.54℃/100m和0.73℃/100m,西坡大于东坡。地气温差冬季西坡大于东坡,夏季东坡大于西坡。年、月平均地温直减率西坡仍大于东坡;东坡除夏季7、8月份外,地温直减率小于气温直减率;西坡除冬季(12月和1月),地温直减率大于气温直减率。降水量东坡比西坡多,海拔2500m以上地区4~10月降水总量随着海拔高度的升高呈增加趋势,增加率为20.9mm/100m。空气相对湿度冬季低夏季高,年变化呈单峰型。东、西坡冬季风速较强夏季相对较弱,初春风速最大。东、西坡气候差异与海拔高度、坡向、下垫面性质有关。   相似文献   

14.
使用INCA(Integrated Nowcasting through Comprehensive Analysis)多源资料融合分析和短临外推预报系统的预报结果作为气象强迫场,驱动一路面温度理论预报模型(Model of the Environment and Temperature of Roads,METRo),开展江苏省高速公路夏季路面高温预报试验,并使用公路沿线逐小时的路面温度观测资料对预报结果进行检验。结果表明:该预报方法能够较好地预报出高速公路沿线日最高路面温度的逐日变化趋势,以及日最高路面温度的大范围空间分布特征。平均日最高路面温度预报绝对偏差为4.1℃,平均相对偏差为10.8%。其中,日最高路面温度预报绝对偏差在5℃以内的站次占总数的64.5%,相对偏差在15%以内的站次占总数的74.6%,比常规业务预报方法分别提高了23.1%和25.3%。但该预报方法对较小的温度波动以及局地性较强的极端温度分布特征的预报技巧还需进一步提高。  相似文献   

15.
“13·12”西安重污染气象条件及影响因素   总被引:6,自引:4,他引:2       下载免费PDF全文
使用高分辨监测资料对2013年12月18—25日西安严重污染天气气象条件及影响因素进行分析。结果表明:严重污染期间,亚洲大陆中高纬度500 hPa呈一槽一脊经向环流型,陕西处于地面冷高压南部均压场控制下。空气质量转好时,高空锋区明显增强,地面冷锋快速东移、南压,边界层高度增大,近地层集聚污染物显著抬升。严重污染与非污染时段气象条件差异明显。除接地逆温外,近地层不同高度存在悬浮逆温,相对湿度呈湿-干-湿垂直分布,温湿条件有利于污染加强。严重污染属于以湿霾为主的重度霾天气,日平均能见度小于1.5 km,边界层高度小于0.7 km,郊区湿霾每日持续时间平均比市区长约5 h。严重污染期间,细颗粒物浓度远高于粗颗粒物,随时间增加趋势明显。颗粒物平均浓度在午后出现峰值,可能与边界层高度偏低、关中盆地地形因素密切相关,本地地面风场日变化对污染有加重效应。  相似文献   

16.
成都地区秋、冬季GPS可降水量的时空分析   总被引:6,自引:4,他引:2  
利用成都地区5个测站地基GPS2007年9月-2008年2月的观测数据,解算出1 min间隔的天顶总延迟,结合自动气象站资料计算出30 min间隔的大气可降水量(GPS-PWV).对月平均的GPS-PWV分析表明:秋、冬季变化趋势从9月开始下降,1月达到最小值,2月又逐渐上升.在大气环流相同的情况下,地理位置相近的站,海拔高的地区大气中的水汽量比海拔低的地区要少,且变化较大;海拔高度相近的站,大气中的水汽含量由南向北减少.日合成分析显示:在静稳天气下,日变化特征显著,具有双峰型特征:白天峰值与气温的最大值相对应;夜间峰值与降水量的峰值相对应;GPS-PWV与地面空气相对湿度白天呈负相关,夜间呈正相关.  相似文献   

17.
A simple routine has been implemented to deduce the 24-hourevolution of the height of the atmospheric boundary layer. This uses a reduced data set of surface-layer parameters, as obtained for examplefrom surface automatic stations.The routine is based on the combination and fitting of the three alreadyexistent models for the evolution of the convectiveboundary layer, the stable boundary layer, and the surface inversionlayer.Hourly values of temperature, friction velocity and potentialtemperature scale (or sensible heat flux) in the surface layer need onlyto be supplied as input data. The lapse rate at the top of the daytime mixed layer is derived fromthe calculated surface inversion profile at sunrise, so that only a roughevaluation of the lapse rate in the free atmosphere remains to be given.The sensitivity of the mixed-layer height is expected to be not verystrong with respect to this last parameter (final part of the growth). The routine has shown satisfactory performances when compared withsodar measurements, working with only a rough average estimate of thefree atmosphere lapse rate.  相似文献   

18.
董丹宏  黄刚 《大气科学》2015,39(5):1011-1024
本文利用中国740个气象台站1963~2012年均一化逐日最高温度和最低温度资料,分析了中国地区最高、最低气温和日较差变化趋势的区域特征及其与海拔高度的关系。结果表明:近50年气温的变化趋势无论是年或季节变化,最低温度的增温幅度都高于最高温度,且其增温显著区域都对应我国高海拔地区。除了春季,其他季节最高、最低温度及日较差的升温幅度随着海拔高度的升高而增大,其中最高温度的变化趋势与海拔高度的相关性最好。同一海拔高度上,最高、最低温度在不同年代的增幅具有不一致性:20世纪80年代,二者变化幅度最小;20世纪90年代,二者增幅最大,尤以低海拔地区最为明显。2000 m以上高海拔地区:最高温度和最低温度的变化趋势在20世纪90年代以前变化较小,而在近十年增幅十分明显;日较差季节变化大:夏季减小,冬季增加。20世纪90年代以前,最高、最低温度随海拔高度变化不大,而近20年随海拔高度升高,最高、最低温度的变化趋势几乎都是先减小后增加。高海拔地区比低海拔地区对全球变化反应更明显。  相似文献   

19.
利用欧洲中期天气预报中心第五代再分析数据产品,归类分析了藏东南雅鲁藏布大峡谷地区水汽输送类别.选取大峡谷地区排龙站、墨脱站两个站点2019年涡动相关系统观测数据,分析不同水汽条件下雅鲁藏布大峡谷地区不同位置近地面水热交换通量的日变化特征.结果表明:高原季风期对应大峡谷地区水汽强输送期和温湿期,高原非季风期则相反.墨脱站...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号