首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于2013—2015年冬季乌鲁木齐市6个环境监测站6类污染物逐时的浓度数据,结合乌鲁木齐逐时的地面气象数据、风廓线雷达及常规探空资料,分析了浅薄型焚风对大气扩散条件及污染物浓度变化规律的影响。研究发现:冬季乌鲁木齐浅薄型焚风的出现频率为57.3%,焚风气流平均气流底高约600 m,气流顶高约2100 m,气流厚度约1500 m;乌鲁木齐市冬季焚风日大气扩散条件与非焚风日相比,最大混合层厚度偏低200 m,逆温层厚度偏厚350 m,逆温差差异达4.4℃,逆温强度和平均风速差别不大;焚风日各污染等级的出现频率都高于非焚风日:Ⅲ-Ⅵ级污染日出现频率累积偏高18%,Ⅵ级严重污染日则必有焚风相伴随;除O3以外,焚风日里各类污染物浓度都高于非焚风日,但日变化规律类似;6类污染物浓度的空间分布在焚风日和非焚风日一致,但是各站污染物浓度均高于非焚风日(O3除外)。市区偏南地带空气质量稍优于市区中心和北部地区。  相似文献   

2.
利用2014~2018年冬季空气质量和污染物浓度数据,结合地面观测、探空及风廓线雷达资料,对新都区冬季气象要素及其污染扩散条件进行分析。结果表明:(1)新都区不同污染物具有相同的日变化特征,在11时左右浓度最高,18时达到最低。(2)新都区污染物浓度与风速、气温、降水、相对湿度有密切关系。当风速大于(小于)平均风速时,污染物浓度减小(增加);气温越高且相对湿度越大,污染也越强;降水较弱时,反而会加重污染。(3)新都区污染天气过程中,逆温强度与厚度的大小将影响污染物的垂直扩散,强度和厚度偏大,污染偏严重。   相似文献   

3.
利用2015—2017年格尔木市L波段雷达探空站的探空资料,分析格尔木市低空逆温的基本特征,并与不同气候区的西宁市、玉树市做对比;结合2016—2017年格尔木市逐日空气污染物浓度(SO_2、NO_2、O_3、PM_(2.5))资料,研究低空逆温对空气污染物浓度的影响。结果表明:07时、19时格尔木市年均逆温发生频率分别为67%、24%,以贴地逆温为主,秋、冬季发生频率高于春、夏季;逆温厚度表现为早间高于晚间,冬季最厚,夏季最薄,07时各季节贴地逆温厚度高于悬浮逆温,19时秋、冬季悬浮逆温厚度高于贴地逆温;逆温强度表现为贴地逆温大于悬浮逆温;07时悬浮逆温的起始高度和终止高度(分别为331 m、571 m)小于19时(分别为662 m、851 m),均在冬季达到最大;07时柴达木盆地逆温发生频率最高(67%)、强度最大(2.07℃/100 m)、厚度最薄(267m),19时逆温发生频率少于河湟地区,但多于三江源地区(24%),强度最小(2.18℃/100 m),厚度最厚(127 m);逆温对SO_2、NO_2、O_3、PM_(2.5)浓度有显著影响,但对PM_(2.5)的影响效果不如风速明显。  相似文献   

4.
本文主要针对塔里木盆地西侧喀什市的大气污染问题,采用多站点、多种污染物数据,分析2015年大气污染物的时空分布规律,揭示其大气污染物的主要特征。总体来看,喀什市主要以颗粒物污染为主,即PM10、PM2.5污染严重。从季节上来看,喀什PM10 平均浓度为春季最高、秋季次之,冬季最低的特点,而PM2.5则呈现冬季最高,夏季最低的特点。如PM10平均浓度春季最高,为504.2μg/m3,这与喀什春季气候特征有关。从日变化来看,PM10的日变化曲线四季除春季外都为双峰结构,春季为多波动型;PM2.5的日变化曲线秋、冬季为双峰结构,春、夏季为波动型结构。总体来看,两类污染物浓度全天的较大值都出现在午夜1:00与下午13:00左右。从空间分布来看, PM10浓度总体上是城市北部低、东南部高的特点;PM2.5浓度四季呈现城市西北部低、南部高的特点。  相似文献   

5.
基于2015—2021年近7 a乌鲁木齐冬季逐小时地面常规观测资料和空气质量数据,并结合ERA5再分析资料对重污染日PM2.5不同增长类型的污染特征、环流形势以及气象条件进行综合分析。研究发现,近7 a乌鲁木齐冬季PM2.5重污染及以上级别的比例由41.2 %降至8.6 %,PM2.5重污染天数由63 d降至13 d,超过70%重污染日PM2.5浓度增长分布在60 μg?m-3以内。依据PM2.5增长类型判别方法,近7 a乌鲁木齐冬季重污染日以缓慢型增长为主。对比分析爆发型增长和缓慢型增长的天气背景形势表明,两种增长类型在欧亚范围内500 hPa高空形势上均主要受西北或偏西气流影响,爆发型增长的高压脊势力较强,乌鲁木齐处于高压中心后部且气压梯度显著;而缓慢型增长的高压脊较为平直,乌鲁木齐位于高压后部的均压场控制下,气压梯度相对较弱。对比两种类型边界层内逆温厚度和强度发现,爆发型增长在925~700hPa之间的逆温层平均厚度明显大于缓慢型增长,前者逆温强度达到1.8 ℃?(100m)-1,明显高于缓慢型增长的1.2 ℃?(100m)-1,表明造成两种PM2.5不同类型增长与边界层内的逆温垂直特征分布结构存在密切联系。  相似文献   

6.
1951—2015年乌鲁木齐市降温过程频数及强度气候特征   总被引:1,自引:0,他引:1  
毛炜峄  白素琴  陈鹏翔 《气象》2016,42(11):1351-1363
利用乌鲁木齐市气象站1951年1月1日至2015年12月31日的逐日气温资料,以日最低气温及其降温幅度为指标,整理出乌鲁木齐市近65年降温过程数据库,将降温过程分为Ⅰ级(弱)、Ⅱ级(中等强度)、Ⅲ级(较强)、Ⅳ级(强)以及Ⅴ级(寒潮)5个等级,分析了乌鲁木齐市各级降温过程的频数、持续日数、过程不同时段降温幅度、过程最低气温、过程最低气温距平偏低幅度等要素气候特征。结果如下:(1)1951—2015年,乌鲁木齐市出现降温过程5834次,平均每年89.8次,其中Ⅰ级(弱)降温过程占78.1%。降温过程的频数季节分布较均匀,但Ⅳ级(强)和Ⅴ级(寒潮)降温过程在春季最多。在降温过程异常偏多与偏少年之间,6—8月的过程频数差异最大,4和9月过程频数差异较小。年平均降温过程频数在7个年代际中差异不大;随年代际增长,Ⅰ级(弱)降温过程频数在增加,Ⅴ级(寒潮)降温过程频数却在减少。(2)1951—2015年,乌鲁木齐市5834次降温过程的持续日数平均为1.89 d,其中持续1 d的过程占49.0%。随降温过程等级由Ⅰ级到Ⅴ级提高,过程持续日数最高出现频率也从1 d过渡到3 d。Ⅳ级(强)和Ⅴ级(寒潮)降温过程均表现为秋末到冬季各月的持续日数长,春季各月短。(3)65年来,乌鲁木齐市过程降温幅度平均为-4.4℃,秋季降温幅度最强,夏季最弱。Ⅳ级(强)以及Ⅴ级(寒潮)过程的降温幅度最强的月份分别是6和12月。65年来,乌鲁木齐市降温过程的最大24、48和72 h降温幅度平均值分别为-3.1、-5.5和-7.4℃,最大24 h降温幅度是春季最强,冬季最弱;48 h降温幅度是春季最强,夏季最弱;72 h降温幅度是冬季最强,夏季最弱。(4)1951—2015年,乌鲁木齐市降温过程的最低气温平均值为0.3℃,冬季各月最低,夏季各月最高,带有显著的季节背景特征。过程最大日气温距平的平均值为-1.9 ℃,随降温过程等级由Ⅰ级到Ⅴ级提高,距平偏低幅度依次增强,Ⅴ级(寒潮)降温过程平均达到-8.5℃。(5)在乌鲁木齐市降温过程频数异常偏多月份,对应在500 hPa高空新疆主要受纬向西风气流控制,较稳定的西风气流上多短波槽脊东移影响新疆;在降温过程频数异常偏少月份,在500 hPa高空新疆主要受西北气流控制,处于高纬地区冷空气自北向南的侵袭通道上,更有利于较强冷空气入侵新疆。  相似文献   

7.
重庆地区两次连续空气污染天气过程对比分析   总被引:1,自引:0,他引:1  
选取2009年1月15—20日和2011年11月20—29日重庆地区两次典型的空气污染天气过程进行了对比分析。结果表明:当连续污染强度较强时(0115过程),高低空形势不利于降水,垂直剖面600 h Pa以下为下沉气流;大气边界层(1.5 km以下)内有多层逆温,湿度垂直分布为"上湿下干";地面为均压场,平均风速为0.84 m·s-1,静风频率高达31.3%;平均气温日较差为2.83℃,湍流活动弱,能见度低(最小能见度为0.6 km),大气维持静稳条件,空气污染持续加重。当连续污染时间较长时(1120过程),同样无降水出现,重庆地区中低层为下沉气流;大气边界层同样出现多层逆温,湿度垂直分布为"上干下湿";地面风速比0115过程大,平均风速为1.23 m·s-1;地面气温日较差为5.18℃,湍流活动较0115过程强,地面平均相对湿度低于80.0%,主要出现灰霾天气,污染持续时间长,污染物浓度相对较低。  相似文献   

8.
哈尔滨冬季重污染日气象特征   总被引:4,自引:0,他引:4       下载免费PDF全文
以2000-2009年中国环境保护部公布的空气质量日报中空气污染指数大于200的日期作为重污染日,从气象因素方面分析哈尔滨冬季重污染日发生的原因。结果表明:哈尔滨冬季重污染日20时地面风速为1级或静风;85 %的重污染日在850 hPa层以下有逆温现象,最大逆温强度出现在地面与925 hPa之间,为0.73 ℃/100 m;95 %的重污染日在850 hPa层以下有下沉运动。重污染的典型地面形势包括高压边缘型、高压中心型和低压边缘型三类。高压边缘型和高压中心型表现为大气对污染物的水平、垂直输送均为不利,而低压边缘型表现为有利于污染物的垂直输送。天气形势特征的归类,可为开展空气污染预报提供参考。  相似文献   

9.
乌鲁木齐重污染日的天气分型和边界层结构特征研究   总被引:2,自引:0,他引:2  
李霞  杨静  麻军  王江  赵克明  任泉  赵勇 《高原气象》2012,31(5):1414-1423
利用2004年1月-2009年4月高空、地面气象观测资料和逐日空气污染指数,对乌鲁木齐空气污染≥Ⅳ级的重污染日持续时间特征、500hPa高空环流形势、地面气压场及相应的边界层结构特征进行了统计分析。结果表明,乌鲁木齐重污染过程发生1天和持续2,3和4天的比例分别是32.2%,23.3%,18.5%和11.0%;发生重污染时500hPa以纬向环流型居多,占重污染总日数的84.2%,经向环流型为15.8%。从地面气压场来看,高压后部型出现重污染的频率最高,达86.3%;高压底部型次之,为9.6%;高压前部型和南高北低型出现重污染的几率较小。乌鲁木齐冬季Ⅲ级污染日对应的温度、湿度及风等要素廓线的垂直结构与冬季平均状况几乎一致,而重污染出现时,边界层逆温较强、风速较低且低空伴随有较厚的偏东风或东南风气流;重污染日和雾的关系密切,伴随有雾或轻雾的频率高达81.3%;前一日20:00(北京时)上干下湿并伴有逆温的边界层结构极易导致空气质量恶化。  相似文献   

10.
利用2010—2015年南京市逐日的08时(北京时间,下同)和20时L波段雷达探空秒级数据资料,研究南京市边界层内(2 km以下)接地逆温和悬浮逆温的出现频率、逆温层厚度以及逆温强度等,对该地区低空大气逆温特征变化进行了详细分析。结果发现:南京市逆温日的发生频率较高,达81.68%,其中接地逆温23.9%,悬浮逆温71.8%,早间发生频率高于晚间,月分布均表现为盛夏季节频率低,秋冬季节发生频率高。逆温层厚度也是夏季最薄,冬季到初春厚度较大;早间的逆温层厚度大于晚间的逆温层厚度,悬浮逆温厚度大于接地逆温厚度。南京市逆温强度夏季小,冬季大,有明显的季节变化趋势。逆温强度早晚差异较小,但接地逆温平均逆温强度是悬浮逆温的1.5倍。逆温强度达到2.0℃/hm的强逆温有50%以上出现在冬季。通过计算污染物浓度与逆温强度的相关性,发现污染物浓度(PM_(2.5)、PM_(10)、SO_2、NO_2、CO)与逆温强度有很好的正相关性,由此说明低空大气逆温层结状况对空气质量有一定影响。  相似文献   

11.
天气雷达回波强度的强弱直接影响预报员对降水强度的判断,在重大气象灾害天气过程中,回波强度偏差有可能导致漏报而产生无法挽回的损失,中国气象局提出“到2022年底全国新一代天气雷达反射率因子标准偏差平均值从4.5dB降低到3.5dB”的目标,就是为了提高雷达监测均一性,降低客观因子对预报质量的影响。本文对岳阳、长沙、湘潭、益阳雷达产品对比分析,利用数据平均偏差方法计算雷达回波强度的扩散特征,得出岳阳雷达回波强度较其他三部雷达均偏弱约4dB以上的结论,并采用“对点测量”方法对岳阳雷达进行重新标定,将平均偏差降低至2.5dB以内,降低了中尺度区域内不同雷达之间的平均偏差,有效增强了回波强度一致性,对提高雷达业务可用性具有十分现实的意义。  相似文献   

12.
针对目前气象探测环境保护工作现状,分析气象探测环境保护工作存的问题及对策,为基层气象行政执法人员提供一些启示和参考。  相似文献   

13.
颠簸是航空气上重要预告内容之一,历史上由于颠簸引起的飞行事故及征候占有一定的比例,颠簸预报也是气象预报的难点,颠簸对飞行的影响至关重要,轻则引起航行中的飞机摆动偏航,重则造成飞机解体,近年来随着太原机场卫星广播传真数值预报产品的使用,我们也在逐步尝试使用数值产品分析颠簸,使颠簸的预报有了明显提高。  相似文献   

14.
基于广东省1999—2015年闪电定位系统数据,利用数理统计方法得出广东省闪电气候年际变化特征、季节变化特征、月变化特征,利用最小二乘法得到闪电密度气候变化趋势系数和年、季节的气候倾向率。利用Matlab来对广东省1999—2013年的雷暴日进行分析,得出其年际周期变化规律,最后采用EOF方法,借助Arc GIS平台得出广东省闪电密度空间向量场分布图。结果表明:由1999—2015年,广东全省的地闪密度总体趋势是逐渐增加,闪电日数最多的月份集中在6—8月(夏季);雷暴日存在变化具有周期性、规律性,分别有13~16 a,7~11 a、2~6 a 3种不同尺度的周期;闪电密度空间分布特征主要有一致型、局部型、纬向型和经向型4种类型。  相似文献   

15.
城市内涝的发生与气象条件紧密相关,强降水是致灾的关键因素。通过分析把握剑河县城降雨变化趋势,结合城区的易涝点及历史积水资料,得到内涝灾害风险的分布特征及演变规律,进一步开展气象条件致灾关键环节分析,有助于剑河县内涝灾害气象决策服务更加精细化,为加强城市灾害的应急处置和应对防范能力体系建设提供气象支撑。通过对剑河县国家气象观测站2007~2021年降水数据进行分析,剑河县城降水主要集中在4~9月,占全年降水的74.5%,该时段也是剑河县城短时强降水、大雨、暴雨的集中高发期,4~9月大雨以上量级降水出现日数呈增多趋势,近15a来1h最大降水量呈逐年波动增加趋势,且主要发生在4~9月。结合DEM数字高程数据得到的易积水路段点及历史积水内涝资料分析,当短时强降水发生时,县城易积水路段会出现不同程度的积水,当小时雨强达到20mm且未来降水持续时,有积水达到10~20cm的风险,对行人过往造成影响,需加强监测并提示相关部门注意易积水路段可能出现积水风险;小时雨强超过30mm时,有积水超过20cm的风险,对车辆及低洼路段建筑影响较大,需及时联系相关部门建议在易积水路段采取相应排水措施,避免出现积水内涝情况影响居民工作生活,同时开展公众服务建议居民注意出行安全;小时雨强超过50mm时,将出现30cm以上积水,对过往车辆及低洼段建筑影响很大,行驶车辆应当就近到安全区域暂避,避免将车辆停放在低洼易涝等危险区域,如遇严重水浸等危险情况应当立即弃车逃生。相关应急处置部门和抢险单位应当严密监视灾情,做好内涝可能引发的其他灾害应急抢险救灾工作。  相似文献   

16.
介绍了利用非线性编辑系统和磁盘阵列等相关设备,对河南省气象影视中心保存的视音频素材进行数字化处理的方法,以及利用SQL数据库技术和ASP.NET编程语言,实现气象影视素材的数字化采集、信息标引编目、存储及管理、检索及共享等功能,建立河南省气象影视素材存储系统的关键技术。  相似文献   

17.
采用传统柯本气候分类法,对1966—2016年的22个厄尔尼诺和拉尼娜年中国气候进行合成分析,并与50年平均的气候分类结果对比。结果表明:ENSO年从整体上对气候带分布的影响不大,我国仍主要由4个气候分区主导;厄尔尼诺和拉尼娜发生年和次年对气候型和气候副型的影响都较为显著,尤其是我国南方地区、西北干旱区及东北地区;厄尔尼诺和拉尼娜发生年我国存在5个厄尔尼诺/拉尼娜敏感区,即藏南地区、陕西中部、四川中部、辽东半岛和内蒙古东部,这些敏感区的冬季出现明显偏干化趋势;拉尼娜发生年,我国还存在两个拉尼娜敏感区,即长江中下游地区和华南地区,这些地区冬季出现明显偏干化趋势;除此外,厄尔尼诺和拉尼娜发生次年,我国存在4个厄尔尼诺/拉尼娜敏感区,即四川中部、陕西中部、辽东半岛、内蒙古东部;厄尔尼诺发生次年,我国还存在4个厄尔尼诺敏感区,即长江中下游地区、华南地区、云南东部及两广丘陵中部地区。  相似文献   

18.
利用2001—2014年MOD16数据和气象站点资料,分析呼伦贝尔市ET、PET的时空变化特征。研究表明,呼伦贝尔市的年平均ET为310.0 mm,呈林区农区牧区分布,年平均倾向率为15.3 mm/10 a。年平均PET为1 096.0 mm,呈农区、牧区两侧向林区递减分布,年平均倾向率为-20.7 mm/10 a。牧区西部ET显著增加(P0.05)、PET显著减小(P0.05),其他地区ET、PET变化不显著。ET与PET之差在5—6月最高,该时段为呼伦贝尔市缺水最为严重的月份。结合气象因子分析,全年的PET均会受到气温的影响,而只有冬季的ET会受到气温影响,植被生长季里ET和PET都会受到相对湿度和降水的影响,生长季的日照长度也会对PET产生影响,但10 m风速与ET和PET的相关性较差。  相似文献   

19.
利用包头试验场2016年12月—2018年12月沥青、水泥、地砖、砂石路面温度、气温观测和同期气象站实况资料,统计分析了不同季节、不同天气状况下各种路面温度和气温的日变化特征,以及不同路面温度与气象因子的关系,采用逐步回归统计方法建立了不同季节不同路面温度预报模型并进行检验。结果表明,不同路面温度的日变化与季节和天空状况有密切关系,路面温度与平均气温、最高气温、最低气温呈显著正相关;与相对湿度呈负相关。基于不同路面温度预报方程的检验结果得出,预报准确率在82%~94%,相关系数在0.86~0.96,模型应用于路面温度预报业务。  相似文献   

20.
以新疆区域500 m×500 m分辨率的数字高程模型(DEM)数据为主要数据源,在提取纬度、坡度、坡向等地形要素栅格数据的基础上,使用考虑地形遮蔽的分布式计算模型,完成了新疆区域全年每日可照时间的数值模拟计算,分析了其时空变化特征,讨论了地形因子对可照时间的影响,结果表明:对新疆而言,可照时间7月最长,为441 h;12月最短,为266 h,区域内可照时间的离散度较大,主要原因是地形差异所致;海拔高于1500 m的山区对全区可照时间标准差的贡献率达到了80.1%;冬夏两季有较为显著的纬向分布特征,三大山脉地区可照时间与同纬度平地相比差异明显,表现出可照时间的地域性分布特征;地形对可照时间的影响比较明显,坡度越大可照时间越少;坡向对可照时间的影响主要表现在冬季,大致为可照时间南坡多、北坡少;随着地形开阔度的增大,可照时间有较为明显的增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号